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PREFACE

This thesis concerns models and procedures for two types of data:
network valued data, and data that has latent network structure of in-
terest. It provides advancements in the modeling of data with these
structures, taking into account both theoretical and practical consid-
erations. Finally, it is bolstered with a number of empirical results
on a variety of datasets.
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ABSTRACT

In this thesis, the focus is on data that has network structure and on problems

that benefit from the application of network-based algorithms. We target four

research problems of interest: scalable and realistic models for network valued

data, graph-based estimation of information theoretic quantities, summarization

of complex time-varying data using dynamic graphs, and finally community de-

tection on large multi-layer networks. This work advances the state-of-the-art in

several directions. First, it introduces a new framework for complex network in-

teraction data using the concept of edge exchangability. Second, it obtains new

tight bounds for the multi-class Bayes error rate based on a graph-based tech-

nique, specifically the minimal spanning tree. Third, it introduces a new estima-

tion method for Henze-Penrose divergence, a quantity relevant for graph-based

multi-class classification. Fourth, it introduces adaptive directed information for

estimating directed interaction networks. Fifth, the thesis presents a comprehen-

sive approach to multi-layer network community detection. Throughout, exam-

ples are provided using real datasets, such as the Enron email dataset, an arXiv

dataset, and Twitter.

xviii



CHAPTER 1

Introduction

Complex, structured data is ubiquitous in both industrial and academic settings and has

elicited a commensurate interest in utilizing structured data to inform inference and deci-

sions. Often, this underlying structure can be exploited to make inference and summariza-

tion procedures more tractable. In the context of large datasets, it is imperative to consider

the data in the context of this structure to build parsimonious models that represent the

data well and provide theoretically grounded inference procedures. Similarly, searching

for underlying structure can help to summarize the data more efficiently and find relevant

attributes of the data of interest that might otherwise go undetected. In other datasets the

structure is explicit, and thus requires careful consideration when reasoning about modeling

decisions.

In this thesis, the focus is on data that has network structure and on problems that

benefit from the application of network based algorithms. In both cases we are concerned

with data that can be summarized with a relational structure of constituent nodes and edges,

appropriately defined based on the context of the problem. Below, four research areas are

introduced that utilize network structure that form the backbone of this thesis.

1.1 Models for network data

Models for network data are of increasing interest in the machine-learning, complex sys-

tems, and statistical literature [88], [106], [123], [165]. These models are concerned with
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data that is in the form of sets of nodes and edges; we call this network-valued data. In

most models, the network is reduced to an adjacency matrix representation, with theoret-

ical results given when the number of nodes grows large. Here, the node is the sampling

unit of interest.

For models to be useful, it is vital that they reflect observed properties of real-world

networks, such as sparsity, clustering, and power-law or scale-free behavior. Many net-

work models, such as the stochastic block model [107] and related variants, are node-

exchangeable [6], meaning that the permutation of the labels of the nodes does not change

the likelihood of the observed network. As a result of this property, it can be shown that

data generated from these models cannot be sparse or capture scale-free behavior, both of

which are often seen in real-world networks.

Recently, an alternative approach has emerged for modeling network data by treating

the edge, or interaction, as the statistical sampling unit. This is particularly natural in

the context of many datasets, such as email networks, social networks, and co-authorship

networks. For such data, it is valuable to impose exchangeability on the edges as opposed

to the nodes. These edge exchangeable models have generated recent attention [38], [62],

[113] and are able to exhibit both sparsity and power-law behavior [62].

Previous edge exchangeable models cannot account for complex hierarchical structure

in interactions. For instance, an email has a hierarchical structure induced by a sender and

its many receivers, and a movie can be thought of as an interaction with multiple sets of

individuals, such as directors, actors, and screenwriters. Chapter 2 introduces an interaction

exchangeable framework for these more complicated structures.
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1.2 Graph based estimation of information theoretic quan-

tities

The estimation of information theoretic quantities is a problem of interest arising not only in

information theory [145], but also feature selection [225], structure estimation for graph-

ical models [13], and training [8], [104] and understanding [222] deep neural networks.

Common examples of these quantities include Shannon mutual information and KL di-

vergence. In general, these quantities can be difficult to compute for continuous random

variables, and most methods rely on an intermediate density estimator for the underlying

distribution. These “plug-in” estimators suffer from bias near the support boundaries of

the marginal densities and can be computationally prohibitive. A recent relevant approach

by [160] utilizes kernel density estimation along with a novel ensemble method to reduce

the bias exhibited in non-ensemble approaches. However, it is computationally intensive,

making its use untenable in large data situations.

Graph based estimation methods aim to skip the density estimation stage and directly

estimate the quantity of interest by calculating a graph structure over the data sample, such

as a minimal spanning tree [99] or k-NN graph [171]. One of the original algorithms in

this area was for the estimation of Henze-Penrose (HP) divergence [81], [99], which is

a member of the broad class of f divergences. This divergence measure has two impor-

tant properties. First, it is possible to estimate the HP divergence directly from a minimal

spanning tree across the data sample. As the minimal spanning tree can be computed in

O(n log n), this approach to estimation is amenable to large datasets. Second, tight bounds

have been proved that relate the HP divergence to the Bayes error rate of a binary classi-

fication problem. Thus, accurate estimation of the HP divergence allows for learning of

the intrinsic hardness of the supervised learning task. Although tight bounds exist for the

Bayes error rate for a binary classification task, this is not true for multi-class classifica-

tion. In Chapter 3, we derive tight bounds for the multi-class case using a generalized
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Henze-Penrose measure, and provide a graph based estimation procedure using a minimal

spanning tree.

Like other estimation methods, graph based estimation methods are subject to the curse

of dimensionality. Specifically, as the feature dimension of the data increases, the bias

of the estimate also increases. In Chapter 4 the thesis introduces a new estimator of the

HP divergence, based on a different computed graph, that reduces the bias for growing

dimension.

1.3 Dynamic summarization of interacting agents

Networks have also been used to describe the influence and dependence between agents or

features. A popular example of this is the partial correlation graph for Gaussian graphical

models [126], and the corresponding algorithms used for estimation, such as graphical lasso

type algorithms and thresholding approaches [76], [102]. These models seek to uncover a

parsimonious dependence representation of the data with computational complexity that is

scalable in high feature dimension. These models and quantities often assume, however,

that each sample is i.i.d.; in many instances, we are interested in understanding the rela-

tionships between time series data that may contain complex causal dependencies across

time. Examples of this type of model include spatio-temporal covariance modeling [90].

A quantity used to measure dependence across time is directed information [148]. Un-

like partial correlation, directed information is assymmetric and time dependent. It was

originally created as a generalization of Shannon mutual information for a channel with

feedback [148]. Directed information allows for a more rich understanding of the influ-

ence and behavior among agents. Directed information is also closely related to Granger

causality [11].

Work has been done to estimate directed information in the context of discrete Markov

processes [115], and generalized linear models [192]. However, these graphs are generally
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considered fixed, and the time series stationary. In Chapter 5, this thesis introduces adaptive

directed information (ADI) to account for time varying signals, and demonstrates specific

forms of ADI that elicit computationally efficient estimation procedures. In Chapter 6, we

introduce an ensemble of ADI estimators that is more robust to the choice of parameters

and to the type of time varying signal.

1.4 Information extraction from multi-layer networks

We often find heterogeneous relationships in data, reflected in more than one type of rela-

tionship between agents [120]. These types of relationships may impose different topologi-

cal properties. For instance, in a social network context, people may be connected by more

than one social platform. Alternatively, we may observe explicit links between agents but

also infer implicit affinities based on agent features. Multi-layer networks can be used to

account for this additional complexity.

A multi-layer network is a network where a set of nodes are connected by intra-layer

and inter-layer edges. This structure is a generalization of single-layer networks, where

there are only intra-layer relationships. These layers represent heterogeneity in the structure

or labeling of the data; a layer might correspond to a type of connection, or a snapshot of

the network at a specific time. The inter-layer structure represents ties among nodes in

the different layers; this structure may be observed, assumed, or estimated depending on

the application. The inter-layer structure in a social network often preserves the labels of

the nodes, so that each node in a single layer is connected to its unique counterpart in the

other layers. If the layers represent timesteps at any time instant, each entity might be

connected to its counterpart in layers before and after the present layer, which represents

the localization of that layer’s characteristics in time.

As the multi-layer structure is more complicated than its single-layer counterpart, meth-

ods for single-layer analysis must be modified, and new methods can be developed specifi-
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cally for multi-layer networks. In Chapter 7, this thesis provides a framework for modeling

multi-layer networks, concentrating on centrality measures and community detection. In

Chapter 8 the thesis provides a novel multi-layer community detection approach that selects

approximately Pareto-optimal partitions between nodes.

Dynamic networks can be thought of as a special case of multi-layer networks. How-

ever, it is also possible to have a dynamic multi-layer network, where each layer is evolving

concurrently over time. In Chapter 9, this thesis proposes a multi-layer summarization pro-

cedure for this case based on the dynamic stochastic blockmodel [234], which allows for

an efficient representation of the dynamic network.

1.5 Outline and contributions of the thesis

This section lists the chapters and corresponding contributions in this thesis. Each chapter

aims to be a self contained exposition on a specific topic; as a result, some introductory

material for particular chapters are similar in scope.

Chapter 2 describes a new hierarchical model for edge exchangeable network data.

Here, we consider incoming interactions that are a structured collection of nodes. The

primary motivating example is an email dataset, where each interaction is a sent email

that contains a sender and a set of recievers. We show that by allowing for heterogeneous

behavior among senders and partially pooling global information, we are able to improve

model fits for real-world data when compared to a non-hierarchical edge exchangeable

model. We call our model the hierarchical vertex components model (HVCM), and test it

on the Enron email dataset as well as an arXiv dataset.

Chapter 3 defines a novel generalization of the Henze-Penrose divergence [99] in the

context of a multi-class classification problem. This measure is then used to obtain up-

per and lower bounds on the multi-class Bayes error, and these bounds are shown to be

provably tighter than state-of-the-art bounds based on pairwise Henze-Penrose divergence
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between classes. Further, it is possible to estimate the proposed measure with a single

global minimal spanning tree, which makes the proposed bounds more computationally

efficient to compute than the pairwise bounds.

Chapter 4 introduces a novel estimator for the Henze-Penrose divergence [99] using a

graph other than the traditional minimal spanning tree (MST). Specifically, we find an op-

timal weighted matching between labeled data points. From this graph we create a statistic

that is able to estimate the divergence, and further bound the Bayes error for a binary clas-

sification problem, similar to the method that Friedman and Rafsky used with the minimal

spanning tree [81]. We demonstrate improvement in high dimensions over the MST statis-

tic.

Chapter 5 develops a method for generating dynamic influence networks between agents

with features that are nonstationary. Using adaptive directed information (ADI), dyadic in-

fluence is measured between entities. We demonstrate an approach to the estimation of

ADI, and apply our method to a Twitter dataset centered around the 2016 US presidential

election, and to a Twitter dataset based on hashtags regarding newly released movies.

Chapter 6 extends ADI to an ensemble method which allows for more flexibility in

choosing appropriate windowing functions. Further, we describe a dynamic covariance

model for Gaussian data, and apply this to a video tracking dataset. Using ADI, we are

able to identify interactions of interest in the dataset and group these interactions according

to their ADI profile.

Chapter 7 provides an overview of multi-layer networks, focusing on examples, central-

ity measures, and community detection methods. We also apply those methods to influence

graphs based on the ADI measure that was introduced previously.

Chapter 8 discusses an approach for clustering over multi-layer networks. We propose

a Pareto optimization approach for clustering with general fitness functions that allow the

user to explore multiple different clusterings, which are all approximately Pareto optimal.

This method is applied to both Twitter data and the Enron email dataset.
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Chapter 9 discusses a denoising summarization approach to multi-layer networks, when

it is assumed that the underlying mesoscopic community structure is the same in all lay-

ers. We further utilize this framework to propose a multi-layer extension of the dynamic

stochastic block model (DSBM), and apply it to the Enron dataset.

Finally, Chapter 10 provides a summary and points to directions for further work.
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CHAPTER 2

Hierarchical Network Models for Structured

Exchangeable Interaction Processes

Network data often arises via a series of structured interactions among a population of

constituent elements. E-mail exchanges, for example, have a single sender followed by po-

tentially multiple receivers. Scientific articles, on the other hand, may have multiple subject

areas and multiple authors. We introduce hierarchical interaction exchangeable models for

the study of these structured interaction networks. In particular, we introduce the hierar-

chical vertex components model as a canonical example, which partially pools information

via a latent, shared population-level distribution. Theoretical analysis and supporting sim-

ulations provide clear model interpretation, and establish global sparsity and power-law

degree distribution. A computationally tractable Gibbs algorithm is derived for inferring

sparsity and power law properties of complex networks. We demonstrate the model on both

the Enron e-mail dataset and an ArXiv dataset, showing goodness of fit of the model via

posterior predictive validation.

2.1 Introduction

Modern statistical network analysis focuses on the study of large, complex networks that

can emerge in diverse fields, including social, biological, and physical systems [18], [74],

[88], [127], [165]. The expanding scope of network analysis requires statistical models and
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Symbol Description
P Set of constituent elements
(s̄, r̄) Single observed interaction
(S̄, R̄) Single random interaction
I Structured interaction process
y,Y Structured interaction-labeled network
#P Cardinality of P
=D Equality in distribution
fin(P) Set of all finite multisets of P

Table 2.1: Glossary of commonly used symbols.

inferential tools that can handle the increasing complexity of network data structures. In

this chapter, we focus on network data arising from sequences of interactions. Network

data arising in this manner will benefit from a framework built upon the interaction as the

statistical unit [151] rather than upon the constituent elements within each interaction as

the statistical units. Edge-exchangeable models [61], [62] are well adapted to analysis of

datasets containing these complex interactions.

While Crane and Dempsey (2017) [62] provide a framework for statistical analysis

of interaction data, the proposed Hollywood model only captures basic global features.

Specifically, the Hollywood model’s asymptotic behavior reflects the empirical properties

of sparsity and power law degree distributions observed in real-world network data, which

are not as well reflected in classic statistical network models such as the ERGMs [228],

graphon models [3], and stochastic blockmodels (SBMs) [107]. While edge exchangeabil-

ity is attractive as a theoretical framework, the set of current edge exchangeable models is

inadequate for modern network data with high structural complexity.

The edge exchangeable model proposed in this chapter is motivated by an important

fact: most common complex networks constructed from interaction data are structured. A

phone-call interaction, for example, takes the form of a sender and receiver pair. E-mail

correspondence generalizes this type of interaction to one sender but potentially multiple

receivers with different attributes like “To,” “Cc,” and “Bcc”. This chapter makes a sub-
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stantial push forward by constructing hierarchical models that reflect this common structure

of structured interaction data. The model overlays local behavior (e.g., per sender) with

global information by partial pooling through a shared global, latent distribution. Simu-

lation and theoretical analysis confirm that the proposed hierarchical model can achieve

simultaneously varying local power-law degree per sender and global power-law degree

distribution. By explicitly modeling hierarchies of interactions, the proposed framework

goes beyond previous work in modeling interaction data and network valued data.

2.1.1 Relevant prior work on interaction data

Interaction data often arises in settings where communications amongst a set of constituent

elements over a specific time period are recorded [71], [223]. Examples are numerous

and include: authorship and co-sponsorship of legislation [80], [208], sending and receiv-

ing e-mails [55], [223], posting and responding on a community forum [202], and trace-

route [142]. In each case, the interaction (edge) is the statistical unit to be modeled, as con-

trasted with the subjects (nodes) of the interactions considered in other work [88]. See [61],

[62] for further discussion of the advantages of defining interactions as the statistical units.

The literature contains several papers focused on statistical modeling of interaction

data. Perry and Wolfe (2013) [188] construct a Cox proportional intensity model [57].

Butts (2008) [36] considered likelihood-based inference using a variant of the proportional

intensity model to capture interaction behavior in social settings. Crane and Dempsey

(2017) [62] consider non-hierarchical models for interaction data. They introduce the no-

tion of edge exchangeable network models and explore its basic statistical properties. In

particular, they show that edge exchangeable models allow for sparse structure and power

law degree distributions, widely observed empirical behaviors that cannot be handled by

conventional approaches.

An alternative approach emerges out of the recent work of Caron and Fox (2017) [42],

who construct random graphs from point processes on R2
+ = [0,∞) × [0,∞). The ran-
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dom graph is characterized by an object called a graphex [224]. Random graph models

generated by this procedure can incorporate sparse, power law behavior into a well-defined

population model. Finite random graphs can be obtained via a thresholding operation,

termed p-sampling [224]. Such random graphs are vertex exchangeable in that they are

built from exchangeable point processes. In this setting, exchangeability is a consequence

of projectivity rather than the simple structured interaction data sampling scheme proposed

in this chapter. See the contributed discussion to the paper by Caron and Fox (2017) [42],

in particular contributions by Bharath [29] and Crane [59], for further discussion.

2.1.2 Relevant prior work on network-valued data

Interaction data is closely related to network-valued data. The most common approach

to statistical network modeling in the literature [88] is to model the adjacency matrix of

a graph - this includes the stochastic block model [107] and its many variants [1], [97],

[128], latent space models [14], [105], and exponential random graph models [200]. In our

setting, the graph is constructed from the observed interaction data rather than being di-

rectly observed itself. While the aforementioned models have generalizations to directed,

non-binary valued graphs, none of them respect the fundamental structure of interaction

data, where the sampling unit is the interaction itself. It has been observed that projection

of interaction data with simple structure onto the space of adjacency matrices can funda-

mentally alter the characteristics of the network, such as sparsity; see [62, Theorem 4.4].

In contrast to [62], however, our proposed framework aims to respect the full structure of

the data, including both the directed nature of the interaction data and its hierarchical set

structure.

There has also been previous work on Bayesian modeling for network data [70], [129],

[184]. The proposed model in this work follows this paradigm, utilizing the posterior

predictive density for model behavior exploration and validation [85], which is an often

overlooked aspect of network models.
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2.1.3 Motivating statistical network question

The critical point is that while there are network models built from interaction data, none

have the following three important properties: (1) a probabilistic symmetry faithful to the

statistical units, (2) provable empirical properties of sparsity and power-law degree, and (3)

hierarchical/multi-level structure to account for local variability in network connectivity.

Our chapter addresses the following fundamental question of network modeling:

Is there a general framework for modeling probabilistic symmetry that provides better fit

to sparse graphs with global network properties such as power-law degree distribution

and also accounts for variations in local network behavior?

This expands upon a fundamental network modeling question raised first in [173], updated

here to reflect the need for models that account for local variability in network connec-

tivity (e.g., differences in receiver distributions per sender). This chapter answers in the

affirmative. Indeed, we start from the observation made by [62] that the interaction is the

fundamental statistical unit in many network settings; this simple observation leads to mod-

els with interaction exchangeability and global network properties. However, no prior work

on interaction and network-valued data has focused on accounting simultaneously for these

properties and local variation (e.g., across callers, senders, article topics).

An additional benefit of our approach is that the model class can be used to study net-

work interdependency. Take the Enron e-mail network, presented as a case study in Section

2.7. Figure 2.8 shows how the model captures interdependency across distributions per e-

mail sender, while Figures 2.6 and 2.7 show our model simultaneously captures the global

power-law degree distribution and local behavior respectively. In our second case study of

the ArXiv dataset, we show how the model output can be used to infer interdependency.

Figure 2.11 visualizes a clustering that captures the interdisciplinary nature of science bet-

ter than simple application of normalized spectral clustering to the raw data; see Figure A.2

in the appendix for a direct comparison.
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2.1.4 Outline and main contributions

The main contributions of this chapter are as follows:

1. We start by formally defining structured interaction data in Definition 2.2.1. We then

define exchangeable structured interaction processes in Definition 2.3.1.

2. We prove a representation theorem for these exchangeable processes in Theorem 2.3.2;

we then define, in Section 2.3.1, hierarchical vertex components models (HVCM) –

a subfamily of exchangeable processes that capture important interaction dynamics.

3. A particular computationally tractable HVCM is introduced in Section 2.4 and an

efficient Gibbs sampling inferential algorithm is derived in Section 2.6.

4. We establish basic statistical properties in Section 2.5. In particular, we provide the-

oretical guarantees of sparsity and power law for the chosen HVCM – two important

empirical properties of network data.

5. We demonstrate this HVCM on both the Enron e-mail dataset and ArXiv dataset in

Section 2.7. In particular, we show how the HVCM can be used to perform goodness

of fit checks for models of network data via posterior predictive checks, an often

under-emphasized aspect of statistical network modeling.

2.2 Structured interaction data

We start by defining structured interaction data, illustrating with a sequence of concrete

examples of increasing complexity.

Definition 2.2.1 (Structured interaction data). Let P denote a set of constituent elements.

Then for a set P , we write fin(P) to denote the set of all finite multisets of P . A structured

interaction process for an ordered sequence of sets (P1, . . . ,Pk) is a correspondence I :
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I → fin(P1)× . . .×fin(Pk) between a set I indexing interactions and the ordered sequence

of finite multisets of (P1, . . . ,Pk).

Remark 1 (Difference from interaction data). In [62], an interaction process is defined as

a correspondence I : I → fin(P) where P is a single population. Structured interac-

tion data, instead, consists of a series of finite multisets, and does not require each set of

constituent elements to be equivalent. That is, each population Pk may contain different

types of elements. This flexibility will allow us to introduce hierarchical structure into the

exchangeable model.

Finally, let fink(P) denote the multisets of size k, so that fin(P) is the disjoint union

∪∞k=1 fink(P).

Example 1 (Phone-calls). Assume Pk are all equivalent and let Pk =: N be a count-

ably infinite population. A phone-call can be represented as an ordered pair of “sender”

and “receiver” drawn from N. Therefore, a phone-call interaction process is a correspon-

dence I : I → fin1(N) × fin1(N). For instance, I(1) = ({a}, {b}) is a phone-call from

sender a to receiver b, both in population N. This is distinct from ({b}, {a}) where sender

and receiver roles are reversed.

Example 2 (E-mails). Assume Pk are all equivalent and let Pk = N be a countably infinite

population. An e-mail can be represented as the ordered sequence of sets: sender, receivers.

Then an e-mail interaction process is a correspondence I : I → fin1(N) × fin(N). For

instance, I(1) = ({a}, {b, c}) is an e-mail from sender a to receivers b and c. This is distinct

from ({b}, {a, c}) and ({c}, {a, b}). Figure 2.1 is a visualization of a similar structured

interaction dataset formed from Facebook posts (i.e., poster followed by finite multiset of

responders).

Example 3 (Scientific articles). Consider summarizing a scientific article by its (1) list of

subject areas and (2) list of authors. Then the scientific article process is a correspondence
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Poster Reactors
a {b, c, d}
e {d, f}

a

b

c

d

e

f

Figure 2.1: Example of network data from Facebook posts. The post process is a corre-
spondence I : I → fin1(N)×fin(N). Here I = N, and the first post I(1) = {{a}, {b, c, d}}
represents user a posting to the forum and b, c, d reacting to the post. The second
post I(2) = {{e}, {d, f}} represents user e posting to the forum and d, f reacting. User d
reacts to both posts.

I : I → fin(P1) × fin(P2). For instance, I(1) = ({a, b}, {c, d}) is an article with subject

areas a and b and authors c and d. Here, P1 and P2 are distinct populations.

Example 4 (Movies). Consider summarizing a movie by its (1) genre, (2) list of producers,

(3) director, and (4) list of actors. Of course, there is overlap in certain populations, as

producers can be directors, directors can be actors, but none are a genre (unless Scorsese,

Spielberg, or Tarantino are considered genres unto themselves). Then the movie process

is a correspondence I : I → fin1(N) × fin(N) × fin1(N) × fin(N). For instance, I(1) =

({a}, {b, c}, {d}, {d, e, f}) is a movie with genre a, producers b and c, director d, and

actors d, e, and f . Note, in this example, the director is also one of the actors.

The above shows Definition 2.2.1 covers a wide variety of examples from network sci-

ence. Next, we construct interaction-labeled networks and define exchangeable structured

interaction processes.

Remark 2 (Covariates). In this chapter, we focus on the study of structured interaction pro-

cesses in Definition 2.2.1 with no additional information, such as covariates. Incorporating

such covariate information is quite difficult; see [2], [130], [147], [215], [217], [241] for

examples of incorpating covariates into network analysis. Covariate information can come
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in two forms: (1) covariate information on the interaction; and (2) covariate information

on constituent elements. Examples of (1) include subject line or body text in an e-mail,

or genre and gross movie sales for a movie. Examples of (2) include gender, age, job ti-

tle, or university affiliation of authors of a scientific article. Certain interaction covariates

can be incorporated into the models considered in this chapter. For example, in the ArXiv

dataset, the article’s subject can be viewed as covariate information on the interaction. We

show how this can be incorporated as part of the structured interaction data structure, and

therefore accounted for in the statistical models.

2.2.1 Interaction-labeled networks

For the remainder of this chapter, we focus on structured interaction processes of the

form I : I → fin(P1) × fin(P2). This type of a structured interaction process captures

the phone-call, e-mail, and scientific article examples. The arguments presented naturally

extend to more general structured interaction processes as given in Definition 2.2.1. When

two populations of constituent elements are equivalent, we write P1 ≡ P2. The interaction-

labeled network is an equivalence clase constructed from the structured interaction process

by quotienting out the labeling of the constituent elements. Let ρj : Pj → P ′j be a bi-

jection for j = 1, 2. We write ρ : P1 × P2 → P ′1 × P ′2 to be the composite bijection

obtained by applying {ρj}j=1,2 componentwise. If P1 ≡ P2, then ρ1 ≡ ρ2; that is, bijec-

tions among equivalent populations, e.g., the senders and receivers in an email network,

denoted by s̄ and r̄, respectively, must agree. Then ρ induces an action on the product

space fin(P1)× fin(P2) by the composite map

(s̄, r̄) = ({s1, . . . , sk1}, {r1, . . . , rk2}) ∈ fin(P1)× fin(P2)

→ ρ (s̄, r̄) = ({ρ1s1, . . . , ρ1sk1}, {ρ2r1, . . . , ρ2rk2}) ∈ fin(P ′1)× fin(P ′2)
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Therefore, the bijection ρ acts on the structured interaction process via composition (ρI)(i)

= ρ(I(i)), i ∈ N. The structured interaction-labeled network is then the equivalence class

constructed from the structured interaction network by quotienting out over bijections ρ:

yI =
⋃

#P ′j=#Pj
j=1,2

{I ′ : I → fin(P ′1)× fin(P ′2) : ρI = I ′, ρ : P1 × P2 → P ′1 × P ′2} , (2.1)

where #Pj is the cardinality of the population. Note we have only quotiented out labels for

constituent elements, so the object yI still has uniquely labeled interactions. For simplicity,

we write y and leave the subscript I implicit.

In the remainder of the chapter, we assume the index set I is countably infinite and

replace it by N. For any S ⊂ N, we define the restriction of I : N → fin(P1) × fin(P2)

to the subset S ⊂ N by I|S . This restricted interaction process induces a restriction to S

of the interaction-labeled network. We write yS to denote the interaction-labeled network

associated with the restricted process I|S . For S = [n] := {1, . . . , n}, we simply write In

to denote the restricted structured interaction process and yn to denote the corresponding

structured interaction network.

2.3 Structured interaction exchangeable models

Let y denote the interaction-labeled network constructed from the structured interaction

process I : N → fin(P1) × fin(P2). Then for any finite permutation σ : N → N, let Iσ

denote the relabeled structured interaction process defined by Iσ(i) = I(σ−1(i)), i ∈ N.

Then yσ denotes the corresponding interaction labeled network constructed from Iσ. Note

that the choice of representative from the equivalence class does not matter. The above

relabeling by permutation σ is not to be confused with the relabeling in the previous section

by the bijection ρ. The bijection ρ relabels the constituent elements, and is used to construct

the equivalence class defining the interaction-labeled network (i.e., the equivalence class).
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The permutation σ reorders the interaction process, and therefore relabels the interaction-

labeled network.

In the remainder of this chapter, we write Y to denote a random interaction-labeled

network. We assume the interactions are labeled in the countably infinite set N. Interaction

exchangeability is characterized by the property that the labeling of the interactions (not

the constituent elements) is arbitrary. We now define exchangeable structured interaction

networks.

Definition 2.3.1 (Exchangeable structured interaction network process). The structured

interaction-labeled network Y is exchangeable if Yσ =D Y for all permutations σ : N →

N, where =D denotes equality in distribution.

Next, we provide a representation theorem for structured interaction processes. We

focus on the setting where each interaction (s̄, r̄) is either never observed or observed in-

finitely often. This is commonly referred to as the “blip-free” setting [60], where blips refer

to interactions (s̄, r̄) that are observed once. We first define the fin(P1)× fin(P2)-simplex

F =

(f(s̄,r̄))(s̄,r̄)∈fin(P1)×fin(P2) and
∑

(s̄,r̄)∈fin(P1)×fin(P2)

f(s̄,r̄) = 1


where (s̄, r̄) := ({s1, . . . , sk1}, {r1, . . . , rk2}) for s1, . . . , sk1 ∈ P1 and r1, . . . , rk2 ∈

P2. Let φ be a probability measure on the simplex and define f ∼ φ to be a random

variable drawn from this measure. Then, given f ∈ F , let the sequence of interac-

tions I(1), I(2), . . . be generated according to

pr (I(i) = ({s1, . . . , sk1}, {r1, . . . , rk2}) | f) = f(s̄,r̄). (2.2)

Then, given I, set Y = yI . Theorem 2.3.2 states that all blip-free structured interac-

tion exchangeable networks can be generated in this manner. The proof can be found in

Section A.2 of the appendix.
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Theorem 2.3.2 (Blip-free representation theorem). Let Y be a structured interaction ex-

changeable network that is blip-free with probability 1. Then there exists a probability

measure φ on F such that Y ∼ εφ, where

εφ(·) =

∫
F
εf (·)φ(df).

2.3.1 Hierarchical vertex components model

Via Theorem 2.3.2, we can construct a particular family of interaction exchangeable ran-

dom networks as follows. First, choose a distribution of senders, f ′ = (fs)s∈P1 , in the

simplex

F1 :=

{
(fs)s∈P1 : fs ≥ 0 and

∑
s∈P1

fs = 1

}
.

Next, choose a second element of F1, which we denote w. Finally, for each s ∈ P1,

construct a conditional distribution over the receivers, i.e., the second component fin(P2).

That is, for every s ∈ P1, we choose f ′′s = (fr | s)r∈P2 in the simplex

F2 =

{
(fr)r∈P2 : fr ≥ 0 and

∑
r∈P2

fr = 1

}
.

We combine these distributions to form f ∈ F1 × F1 × (⊗s∈P1F2), which determines a

distribution on the space fin1(P1)× fin(P2) by

pr (E = (s̄, r̄) | f) = νk1

[
k1∏
i=1

fsi

]
·

∑k1
i=1wsi · ν

(si)
k2

[∏k2
j=1 frj | si

]
∑k1

i=1 wsi
, (2.3)

where νl ≥ 0, ν(s)
l ≥ 0,

∑∞
l=1 νl = 1, and

∑∞
l=1 ν

(s)
l = 1 for each s ∈ P1. This de-

termines an interaction exchangeable network, which we call the hierarchical vertex com-

ponents model (HVCM). Given f , I(1), I(2), . . . are independent, identically distributed

(i.i.d.) random structured interactions drawn from (2.3). The associated random interaction
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exchangeable network Y := yI is obtained through (2.1), whose distribution we denote by

εf .

In non-HVCMs [62], each constituent element had a single frequency of occurrence.

By contrast, HVCMs allow the frequency of occurrence for elements in the second term

of (2.3) (i.e., r ∈ P2) to depend on first component (i.e., s̄ ∈ finP1) through fr|s. This

dependence is two-fold: (1) w ∈ F1 controls which f ′′s is chosen across s ∈ s̄; and (2)

the local distributions can vary, leading to the size-biased ordering of r ∈ P2 varying as a

function of s.

Remark (Vertex exchangeability versus interaction exchangeability). While HVCMs are

expressed as a function of the vertices, they are interaction exchangeable and not vertex

exchangeable. To see this, consider Theorem 2.3.2. A direct corollary is that vertices are

sampled in size-biased order according to their relative frequency of occurrence. In hier-

archical models, the size-biased sampling of the second component depends on the first

component. Regardless, this implies the observed constituent elements are not exchange-

able with the unobserved constituent elements. On the other hand, vertex exchangeability

implicitly assumes the observed vertices and unobserved vertices are exchangeable.

2.4 Sequential description for a subfamily of HVCMs

Here we provide a sequential description of a particular subfamily of HVCMs. For ease

of comprehension, we start with the setting of a single sender where the size of the first

component is one (i.e., νk1 = 1[k1 = 1]). In this setting, the sequential description is

presented in the context of e-mails. Let (α̃, θ̃) satisfy either (1) 0 ≤ α̃ < 1 and θ̃ > 0, or

(2) α̃ < 0 and θ = −Kα̃ for some K ∈ N. In setting (1), the population P1 is infinite,

while in setting (2) the population is finite and equal toK. In Section 2.4.3, we show how to

extend this model to the general setting of multiple senders. For ease of comprehension, we

let S = P1 (senders) andR = P2 (receivers) denote the two sets of constituent elements.
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We introduce some additional notation. For each n = 1, 2, . . ., the nth emailEn is given

by the structured interaction (S̄n, R̄n) = ({Sn,1}, {Rn,1, . . . , Rn,kn,2}) where Sn,1 ∈ S is

the sender, and Rn,j ∈ R is the jth receiver of the nth article. Suppose n articles have been

observed and define Hn = {E1, . . . , En} to be the observed history of the first n e-mails.

For the (n+ 1)st e-mail, choose the sender according to

pr (Sn+1,1 = s |Hn) ∝

 Dout
n (s)− α̃ s ∈ Sn

θ̃ + α̃|Sn| s 6∈ Sn.
(2.4)

where Dout
n (s) is the outdegree of the subject s, and Sn are the set of unique senders

in (S̄1, . . . , S̄n) and |Sn| is the set’s cardinality.

Given Sn+1,1 = s ∈ S, we choose the number of recipients according to the discrete

probability distribution function {ν(s)
k }∞k=1. Finally, let Dn,j(s, r) denote the indegree of

receiver r when restricted to e-mails from sender s after the first n e-mails and the j − 1

recipients of the nth e-mail; that is,

Dn,j(s, r) = # {(m, l) |Rm,l = r and Sm,1 = s,

for m < n and l ≤ km, or m = n and l < j}.

Finally, we define mn,j(s) =
∑

r∈RDn,j(s, r) to be the number of receivers (accounting

for multiplicity) of e-mails from sender s. Each of these statistics is a measurable function

of Hn. Note, these statistics are local (i.e., specific to the particular subject). Here, we de-

scribe a procedure for sharing information across senders. To do this, we define a partially

observable global set of information. First, define the observable variable Rn,j to be the

complete set of receivers; that is,

Rn,j = {r ∈ R | ∃Rm,l = r for m < n and l ≤ km, or m = n and l < j}.
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Additionally, let Kn,j = |Rn,j| be the cardinality of this set. For each r ∈ Rn,j we posit

existence of a latent degree per sender s ∈ Sn and receiver r denoted by Vn,j(s, r). We then

define Vn,j(·, r) =
∑

s∈Sn Vn,j(s, r) and mn,j =
∑

r∈Rn,j Vn,j(·, r). Next, define Rn,j(s) to

be the complete set of receivers when restricting to e-mails from sender s ∈ Sn, andHn,j to

be the observable history Hn−1 union {Sn,1, Rn,1, . . . , Rn,j}. That is, Hn,j is the observed

history up to the j − 1th receiver on the nth e-mail, where Hn,0 implies only sender infor-

mation for the nth e-mail. Finally, for each s ∈ S, let (αs, θs) satisfy either (1) 0 ≤ αs < 1

and θ > 0, or (2) αs < 0 and θs = −K ′αs for some K ′ ∈ N. In setting (1), the receiver

population P2 is infinite, while in setting (2) the population is finite and equal to K ′. For

the remainder of this chapter, we assume setting (1).

Given the indegree distribution {Dn,j(s
′, r′)}r′∈Rn,j ,s′∈Sn , the latent degree distribution

{Vn,j(s′, r′)}r′∈Rn,j ,s′∈Sn , the current sender s, along with the observable history Hn,j , the

probability of choosing receiver r is proportional to

Dn,j(s, r)− αsVn,j(s, r) + (θs + αsVn,j(s, r))
(
Vn,j(·,r)−α
mn,j+θ

)
mn,j(s) + θs

, r ∈ Rn,j(s) (2.5)

and
θs + αsVn,j(s, r)

mn,j(s) + θs
· θ + αVn,j(·, r)

mn,j + θ
, r 6∈ Rn,j(s). (2.6)

Note the difference in the discount of indegree in (2.5) and outdegree in (2.4). For the

sender distribution (2.4), the outdegree discount is α̃; on the other hand, for (2.5), the

indegree discount is αsVn,j(s, r). This reflects that in (2.4), sender s is chosen from a

single distribution; however, in (2.5), receiver r can be chosen either locally or globally.

The remaining question is how to update the degree distributions. In (2.5) and (2.6),

we can either observe r “locally”, or we escape the local model and observe r due to

the latent global information. Given Rn,j = r we update both local and global degrees.

If r 6∈ Rn,j(s) then the global degree Vn,j(s, r) increases from zero to one. If r ∈ Rn,j(s)

then the local degree Dn,j(s, r) increases by one and the latent degree is increased by
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one with probability τn,j(s) =
θs+αsVn,j(s,r)

mn,j(s)+θs
. The exact procedure for incrementing Vn,j is

discussed in Section 2.6.

2.4.1 Partial pooling

The importance of the latent global degree distribution is that it allows information to be

shared across the conditional receiver distributions. The above model formalizes the par-

tial pooling of information. The degree of pooling is controlled by the escape probabil-

ity τn,j(s), which in general decreases as the number of e-mails from sender s increases.

Note that over time as more e-mails by sender s are seen, the escape probability τn,j(s)

tends to zero whenever αs < 1. Therefore, the local impact of the latent global degree in-

formation becomes negligible once we have sufficient local information. However, the first

time a sender-receiver pair is observed, it must occur via the shared global set of informa-

tion. The global latent degrees {Vn,j(s, r)}r∈Rn,j ,s∈Sn therefore contribute to the behavior

of new and/or rarely seen senders.

2.4.2 Connection between sequential description and hierarchical ver-

tex components models

The sequential description in Section 2.6 is equivalent to a particular HVCM. When αs =

0, ∀s ∈ P1, an analytic stick-breaking representation can be derived. This connects the

sequential process directly to (2.3). To do so, we start by constructing the sender distri-

bution. Here, we assume P1 ≡ P2 ≡ N. For s ∈ N, define independent random vari-

ables βs ∼ Beta(1− α̃, θ̃+ sα̃). Then, conditional on {βs}∞s=1, the probability of choosing

sender s ∈ N is given by

fs | {βs′}∞s′=1 = βs

s−1∏
i=1

(1− βi),

where the product is set equal to one for s = 1, and f ′ = {fs}∞s=1. In our current setting,

νk1 = 1[k1 = 1] so the weights w = {ws}∞s=1 can be ignored for now. See Section 2.4.3 for
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a description of how these can be constructed in the more general case.

We now construct, for each s ∈ N the probabilities {fr | s}∞r=1 via a hierarchical model

given α > 0 and θ > −α, and we set f ′′ = {{fr|s}∞r=1}∞s=1 . To do this, we first de-

fine global independent random variables β̃r ∼ Beta(1 − α, θ + rα) for r ∈ N. Then,

conditional on {β̃r}∞r=1, for r ∈ N, we define associated stick-breaking probabilities π̃r =

β̃r
∏r−1

i=1 (1− β̃i). These are probabilities of choosing receiver r based on the global random

variables {β̃}∞r=1. The local stick-breaking distributions are then defined via a perturbation

of these global probabilities. That is, for θs > 0, define independent random variables

β̃′r | s ∼ Beta

(
θsπ̃r, θs

(
1−

r∑
l=1

π̃l

))

fr | s | {β̃′j | s}∞j=1 = β̃′r | s

r−1∏
i=1

(
1− β̃′i | s

)

where the product is defined equal to one when r = 1. This yields a stick breaking rep-

resentation for f = {f ′, f ′′} for a particular hierarchical vertex components model. Par-

tial pooling occurs via the shared global probabilities π̃r. The local distributions satisfy

E
[
fr | s | {π̃r′}∞r′=1

]
= πr. Therefore, the distribution {fr | s}∞r=1 can be thought of as pertur-

bation of the global distribution {πr}∞r=1 where θs controls the amount of perturbation. In

particular, fr | s → πr with probability one as θs →∞.

By construction, f = ({fs}∞s=1, {fr | s}∞s,r=1) is a random variable over the space F1 ×

⊗∞s=1F2. Lemma 2.4.1 establishes the connection between these random variables and the

canonical model for αs = 0. Although this model for αs > 0 does not admit a known

closed-form stick breaking representation, Theorem 2.3.2 discussed in Section 2.3 ensures

these asymptotic frequencies exist. Section A.3 of the appendix describes a specific prob-

abilistic construction of these frequencies.

Lemma 2.4.1. The sequential HVCM model for αs = 0 for s ∈ N is equivalent in distri-

bution to (3), where f is distributed according to the stick-breaking construction described

above.
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Proof can be found in Section A.3 of the appendix; see [112], [189] for further details

on the stick-breaking representation.

Remark (Connections to CRFP). Note that the HVCM described above is closely related to

the Chinese Restaurant Franchise Process, a well-known process in the machine learning

literature [32], [189] that is almost exclusively used to model latent clusters in data. Here,

we use these ideas in the construction of the interaction process. Thus, the objectives are

quite different; for instance, there is almost no focus on the inference of the model param-

eters in the ML community; in our setting, these parameters are crucial to understanding

the overall interaction process behavior. This model is most similar to [220], where it is

used for language modeling. Similar to the CFRP, the above construction is related to

the Pitman-Yor process and the GEM distributions [189]. More details can be found in

Section 2.6 and Appendix A.

2.4.3 Accounting for multiple elements in first component

In the general setting, the first component, S̄n, is a random element of fin(P1) (i.e., a

random finite multiset of elements from P1). In the sequential description, we assumed

the size of this multiset was one. We now consider S̄n = {Sn,1, . . . , Sn,kn,1} for general

kn,1 ≥ 1. First, let H(s)
n,j = Hn ∪ {Sn+1,1, . . . , Sn+1,j} denote the history of the first n

e-mails and the first j senders of the n + 1st e-mail. Extension of 2.4 to handle multiple

senders is straightforward by replacingHn byH(s)
n,j and defining all other terms similarly.

In the sequential description, the sender Sn,1 is used to specify which local statistics

(i.e., Vn,j(r, s), Dn,j(r, s) and mn,j(s)) to consider. However, when there are multiple

senders, this choice is no longer straightforward. To address this, we introduce a random

variable Zn with domain S̄n. This variable indicates which local statistics will be used in

receiver distributions (i.e., equations (2.5) and (2.6)). Define S(z)
n to be the unique elements
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inH(z)
n := (Z1, . . . , Zn). Then

pr
(
Zn = s |H(z)

n , S̄n
)
∝ 1


D

(z)
n (s)− α̃z s ∈ S(z)

n ∩ S̄n

θ̃z + α̃z|S(z)
n | s 6∈ S(z)

n ∩ S̄n

0 s 6∈ S̄n

(2.7)

where (1) 0 < α̃z < 1 and θ̃z > 0 if the population S is considered infinite, and (2) α̃s < 0

and θ̃z = −Kα̃z if population is finite and |S| = K. This is equivalent to restricting (2.4)

to be non-zero only on the domain S̄n. Moreover, it is conditional on the history H(z)
n

instead of Hn. If Zn = s for s ∈ S(z)
n , then increase D(z)

n (s) by one. If s 6∈ Sn, then set

D
(z)
n (s) = 1.

2.5 Statistical properties

We now state several theoretical results for the proposed HVCM built from the sequen-

tial description in Section 2.4. For ease of comprehension, we refer to this model as the

“canonical HVCM model”.

Theorem 2.5.1. The canonical HVCM with parameters Ψ = (α̃, θ̃, α, θ, {αs, θs}s∈P1) de-

termines a structured exchangeable interaction probability distribution for all Ψ in the

parameter space.

Theorem 2.5.1 is not immediate from the sequential construction in Section 2.4, but is clear

from the reparameterization of the model presented in Section 2.6, and its connection to the

model previously discussed (this is formalized in Section A.3) of the appendix.

The remainder of this section focuses on the setting where the size of the first compo-

nent is one (i.e., νk1 = 1[k1 = 1]). Moreover, we will make certain alternative assumptions

concerning the sender distributions. These constraints allow sufficient complexity to be in-

teresting, but assume sufficient regularity to push through the theoretical analysis. First, we

28



turn to the growth rates in the expected number of unique receivers. Unlike the Hollywood

model, this rate depends on both the distribution over senders, the global parameter α, and

the local parameters {αs}s∈P1 . Before stating the theorem, we require a formal definition

of sparsity. For clarity, we define quantities in terms of receivers to distinguish vertices

observed as senders and those observed as receivers (i.e., in P1 and P2 respectively).

For a structured interaction-labeled network Y, let v(Y) denote the number of non-

isolated receivers; e(Y) is the number of interactions; Mk(Y) is the number of interactions

with k receivers;Nk(Y) is the number of receivers that appear exactly k times; and d(Y) =

(dk(Y))k≥1 is the indegree distribution, where dk(Y) = Nk(Y)/v(Y). Note that these are

global statistics that do not depend on the interaction labels. We define local versions

by superscripting each statistic by s ∈ P1. For instance, v(s)(Y) is the number of non-

isolated receivers when restricting Y to only those interactions involving sender s. The

statistics e(s)(Y),M
(s)
k (Y), N

(s)
k (Y), d(s)(Y) and d(s)

k (Y) are defined similarly.

Definition 2.5.2 (Global and local sparsity). Let (Yn)n≥1 be a sequence of interaction-

labeled networks for which e(Yn) → ∞ as n → ∞. The sequence (Yn)n≥1 is sparse

if

lim sup
n→∞

e(Yn)

v(Yn)m•(Yn)
= 0,

where m•(Yn) = e(Yn)−1
∑

k≥1 kMk(Yn) is the average arity (i.e., number of receivers)

of the interactions in En. A non-sparse network is dense. We say the sequence is (En)n≥1

is s-locally sparse if

lim sup
n→∞

e(s)(Yn)

v(s)(Yn)m
(s)
• (Yn)

= 0,

where m(s)
• (Yn) = e(s)(Yn)−1

∑
k≥1 kM

(s)
k (Yn) is the average arity (i.e., number of re-

ceivers) of the interactions in Yn from sender s ∈ P1. A network that is not s-locally

sparse is s-locally dense.

For (Xn)n≥1 a sequence of positive random variables and (yn)n≥1 a sequence of positive

non-random variables, letXn ' yn indicate limn→∞Xn/yn exists almost surely and equals
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a finite and positive random variable. Theorem 2.5.3 shows the canonical model may be

either globally sparse and/or dense. The theorem assumes a finite population of senders

with number of e-mails per sender drawn from a multinomial distribution.

Theorem 2.5.3. Suppose the sender population P1 is finite, consisting of d senders, i.e.,

P1 = [d] := {1, . . . , d}. Assume, out of the n e-mails, the number of e-mails per sender s,

denoted ns, is drawn from a multinomial distribution with probabilities (p1, . . . , pd) such

that
∑d

s=1 ps = 1 and ps > 0 for all s ∈ [d]. Let µs be the average size of emails

for sender s and µ :=
∑d

s=1 psµs the average size of emails across all senders. Then

v(Yn) ' (µ1/α?µ?p?n)α0α∗ where s? = arg maxs∈[d] αs, µ? = µs? , and α? = αs? . In

particular, if µ−1 < α · α? < 1, then (Yn)n≥1 is almost surely sparse.

Theorem 2.5.3 establishes that the canonical HVCM for a special case of the sender

distribution can capture degrees of sparsity. If µs = µ for all s ∈ P1 and αα? < µ−1 then

it must be the case that ααs < µ−1 for all s ∈ P1. Therefore, a dense network must be

s-locally dense for all s ∈ P1. However, a sparse network can be s-locally dense for some,

but not all, s ∈ S . We turn now to considerations of power-law degree distribution for

interaction-labeled networks. We start with a definition.

Definition 2.5.4 (Global power-law degree distributions). A sequence (Yn)n≥1 exhibits

power-law degree distribution [42], [62], [224] if for some γ > 1 the degree distributions

(d(Yn))n≥1 satisfy dk(Yn) ∼ l(k)kγ as n → ∞ for all large k for some slowly varying

function l(x); that is, limx→∞ l(tx)/l(x) = 1 for all t > 0, where an ∼ bn indicates that

an/bn → 1 as n → ∞. More precisely, (Yn)n≥1 has power law degree distribution with

index γ if

lim
k→∞

lim
n→∞

dk(Yn)

l(k)k−γ
= 1. (2.8)

Theorem 2.5.5 establishes the power-law degree distribution for the canonical HVCM

for the case of αs = 1,∀s ∈ S.
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Theorem 2.5.5. Let (Yn)n∈N obey the sequential description in Section 2.4 with param-

eters (α̃, θ̃) and let αs = 1 for all s ∈ P1. For each n ≥ 1, let pn(k) = Nk(Yn)/v(En)

for k ≥ 1 be the empirical receiver degree distribution where Nk(En) is the number of

receivers of degree k ≥ 1 and v(En) is the number of unique receivers in En. Then, for

every k ≥ 1,

pn(k) ∼ αk−(α+1)/Γ(1− α) (2.9)

where Γ(t) =
∫∞

0
xt−1e−xdx is the gamma function. That is, (Yn)n≥1 has a power law

degree distribution with exponent γ = 1 + α ∈ (1, 2).

2.6 Posterior inference

We now consider performing posterior inference for the canonical HVCM given an ob-

served interaction network Yn. As in Section 2.4, we start with the setting where the size

of the first component is one (i.e., νk1 = 1[k1 = 0]). The parameters (v
(s)
k2

)k2∈N, for all

s ∈ S are estimated non-parametrically, and are not important for the remainder of the

chapter; therefore, the details are omitted for these parameters.

We start by reparameterizing the HVCM in a more useful form for inference, and which

gives an explicit structure for updating the latent degree Vn,j - we call this the extended

canonical HVCM, or extended model for short. In this representation, every “escape” from

the local distribution and choice of receiver r leads to an auxiliary vertex v being intro-

duced locally for a sender s - auxiliary vertices are not shared between senders. The label

ls(v) of the auxiliary vertex is r; the auxiliary vertex accounts for the fact that the global

distribution can select receiver r multiple times. Finally, the observed reciever is assigned

to the auxiliary vertex, and we write that assignment φn,j = v. The number of auxiliary

vertices with label r and sender s is equal to the number of times the local distribution

for sender s escapes and choose the global set of information (i.e., Vn,j(r, s)). The sum of

the degrees across auxiliary vertices with label r and sender s is equal to the indegree for
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receiver r (i.e., Dn,j(r, s)). Finally, we write dsrv to denote the degree of auxiliary vertex v

in sender s that also has label r. Note that for r′ 6= ls(v), dsrv = 0.

Given Hn and Sn+1,1 = s, the probability that Rn+1,j is assigned to auxiliary vertex

φn+1,j = v is:

pr(φn+1,j = v |Hn, Sn+1,1 = s) ∝


ds·v − αs, v ≤ Vn+1,j(s, ·)

αsVn+1,j(s, ·) + θs, v = Vn+1,j(s, ·) + 1,

Further, if φn+1,j = Vn+1,j(s, ·) + 1, then we add an auxiliary vertex Vn+1,j(s, ·) + 1

with its label chosen with probability:

pr(ls(Vn+1,j + 1) |φn+1,j = Vn+1,j(s, ·) + 1,Hn,j, Sn+1 = s)

∝


Vn,j(·, r)− α, r ∈ Rn+1,j

αVn+1,j(·, r) + θ, r /∈ Rn+1,j.

The likelihood of observing YN = {{Sn,1, kn, {Rn,j, φn,j}knj=1}, {ls(·)}s∈SN}Nn=1 given the

parameters Ψ = (α̃, θ̃, α, θ, {αs, θs}s∈P1) is given by

pr(YN) = pr({{Rn,j}knj=1}Nn=1, ls(·)s∈SN |{Sn,1}
N
n=1, {kn}Nn=1)

· pr({Sn,1}Nn=1) pr({kn}Nn=1), (2.10)

where

pr
(
{{Rn,j}knj=1}Nn=1, ls(·)s∈SN | {Sn,1}

N
n=1, {kn}Nn=1

)
=

[θ + α]KN−1
α

[θ + 1]mN−1
1

∏
r

[1− α]
VN (·,r)−1
1

∏
s

[θs + αs]
VN (s,·)−1
αs

[θs + 1]
mN (s)−1
1

VN (s,·)∏
v=1

[1− αs]dsrv−1
1 ,
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and

pr({Sn,1}Nn=1) =
[θ̃ + α̃]SNα
[θ̃ + 1]N1

∏
s

[1− α̃]
DoutN (s)−1
1 ,

pr({kn}Nn=1) =
N∏
n=1

v
(s)
k ,

where [a]cb = a(a + b) . . . (a + (c − 1)b) for c ∈ N and a, b ∈ R+. The joint density as

written in (2.10) is exchangeable with respect to re-ordering of the interactions.

Lemma 2.6.1 proves that the proposed canonical HVCM is recovered by marginaliz-

ing over configurations of auxiliary vertex labels and assignments, which leaves only the

observed degrees Dn,j and latent degrees Vn,j . The complete likelihood for the canonical

model is given in Section A.3 of the appendix, and the likelihood is exchangeable, proving

Theorem 2.5.1. Proof of Lemma 2.6.1 is also left to Section A.3 of the appendix.

Lemma 2.6.1. Marginalizing the extended model over configurations of auxiliary vertex

assignments and labels recovers the canonical model.

2.6.1 Choice of priors

Here, we define two approaches to defining priors for the global parameters θ, α and local

parameters θs, αs, s ∈ S.

2.6.1.1 Conjugate Bayesian Parameters

The first approach is to set the priors for θ parameters to a high-variance Gamma distribu-

tion, and the priors for the α parameters to the Beta distribution. In general, the global θ

will be much larger than the local parameters, and the appropriate values will depend on

the sparsity of the overall network - for instance, the global θ for the arXiv data is an order

of magnitude greater than the global θ for the Enron dataset. we check the appropriateness

of the prior distribution using posterior predictive checks on sparsity. See Section 2.7.3 for
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details on posterior predictive checks and model comparison.

For datasets of reasonable size, we have found that the prior for the global parameters

does not significantly affect the resulting posterior density. In the subsequent examples,

the size of the datasets was more than sufficient to not be strongly affected by the choice

of global priors. For the α parameter, this suggests using Beta(1, 1) distribution, i.e., the

Uniform distribution. With θ, different datasets can have a difference in posterior means

that are 2 or 3 orders of magnitude. Although the posterior density is mostly unchanged,

attempting inference with a mismatched θ prior will require more Gibbs samples before

mixing occurs. We have found that θ ∼ Gamma(1, 10000) is an appropriate diffuse prior

that allows for fast mixing. The lower-level parameter θs is generally much less than the

global θ, so θ ∼ Gamma(1, 1000) is an appropriate prior that allows for variety in distribu-

tion but also has a prior mean that is lower than the global θ. For the local αs, we again use

the Uniform distribution.

2.6.1.2 Priors based on Hollywood model fits

The second approach, which is used in Section 2.8 for the arXiv dataset, is to fit the Hol-

lywood model [62] to each of the local datasets, and then use a Gamma(θ̂/100, 100) prior

for each θ, where θ̂ is the estimate of θ for the Hollywood model. The priors for the α’s are

again set to Beta(1, 1).

2.6.2 Gibbs sampling algorithm

Here we introduce a Gibbs sampling algorithm for sampling from the posterior distribu-

tion of Ψ given an observed interaction-labeled network Yn. To do this, we use aux-

iliary variable methods [73] to perform conjugate updates for all parameters. First, de-

fine the binary auxiliary variables zr,j for r ∈ R, j = 1, . . . , v•r − 1 and zs,r,k,u for

s ∈ S, r ∈ R, v = 1, . . . , VN(s, ·) − 1, u = 1, . . . , dsrv − 1. Next define auxiliary vari-

ables yi for i = 1, . . . , v(Yn)− 1 and ysi for s ∈ S and i = 1, . . . , ds•• − 1. Finally, define
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auxiliary variables x, {xs}s∈S ∈ [0, 1]. We formally derive these updates in Section A.1 of

the appendix; this algorithm is similar to the one described in [220], except for the modifi-

cations required for our model. While sampling each auxiliary vertex for the receivers, we

also update the set of auxiliary vertices [VN(s, r)] and their degrees dsrv.

x ∼ Beta(θ + 1,mN − 1) (2.11)

yi ∼ Bernoulli
(

θ

θ + α · i

)
, i = 1, . . . KN − 1 (2.12)

zrj ∼ Bernoulli
(
j − 1

j − α

)
, r ∈ Rn, j = 1, . . . , VN(·, r)− 1 (2.13)

θ ∼ Gamma

(
KN−1∑
i=1

yi + a, b− log x

)
(2.14)

α ∼ Beta

c+

KN−1∑
i=1

(1− yi), d+
∑
r

VN (·,r)−1∑
j=1

(1− zr,j)

 (2.15)

xs ∼ Beta (θs + 1, VN(s, ·)− 1) , s ∈ SN (2.16)

ysi ∼ Bernoulli
(

θ

θ + α · i

)
, s ∈ SN , i = 1, . . . ds•• − 1 (2.17)

zsrvu ∼ Bernoulli
(
j − 1

j − α

)
, s ∈ SN , r ∈ RN , v = 1, . . . , VN(s, ·)− 1, u = 1, . . . , dsrv − 1

(2.18)

θs ∼ Gamma

(
ds••−1∑
i=1

ysi + as, bs − log xs

)
, s ∈ SN (2.19)

αs ∼ Beta

φα +
ds••−1∑
i=1

(1− ysi), φ(1− α) +
∑
r

VN (s,·)−1∑
v=1

dsrv−1∑
u

(1− zsrvu)

 , s ∈ Sn

(2.20)

There are two important differences between this algorithm and [220]. First, in the case

of multiple elements in the first component, we perform an approximate sampling proce-

dure found in Section 2.6.3 to find the latent Zi. Second,the language model in [220] has

multiple levels of hierarchical parameters, where we have only two levels of components.

Convergence can be checked via traceplots and, in our experiments, occurs within the first
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hundred or so iterations; see Figure 2.3 for traceplots in the email network example.

2.6.3 Approximate sampling in the case of multiple elements in the

first component

In the case S̄n may contain multiple elements, one can sample from the posterior

pr(Zi = s|H(z)
n , S̄i) ∝ pr(Zi = s|S̄i) pr(R̄i = r̄i|Zi = s).

Note that, in general, the joint likelihood pr(R̄i = r̄i|Zi = s) is difficult to calculate due

to the marginalization over all possible vertex label configurations for R̄i. Instead, we

propose a sampling procedure to approximate this quantity, by sequentially sampling the

vertex labels V̄i using the given counts, where V̄i denotes the multiset Vi,1, . . . , Vi,ki,2:

pr(R̄i = {Ri,1, . . . , Ri,ki,2}, V̄i|H(z)
n , Zi) =

ki,2∏
j=1

pr(Ri,j = ri,j, Vi,j = vi,j|H(z)
n , Ri,j−1 = ri,j−1, Ri,j−1 = ri,j−1, . . . , Zi = s).

After sampling V̄i for a number of runs, we average the likelihoods to get an estimate of

pr(R̄i = r̄i|Zi).

2.7 Application to Enron email network

In this section the proposed HVCM model and inference procedure is applied to the Enron

email dataset. Further, techniques to demonstrate the goodness of fit of the model are

discussed, and are applied in comparison with with the previously published “Hollywood”

model [62] and the generalized gamma process (GGP) model [42]; in particular, the HVCM

model is shown to have better model fit at the local level compared to others.
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2.7.1 Dataset overview

The Enron email dataset consists of approximately 500,000 emails collected from 1998 to

2002 and was originally collected by the Federal Energy Regulatory Commission during

its investigation into the company [55]. The dataset originates from an email dump of 150

users. In total, there are 19,752 unique senders, 70,572 unique receivers, for a total of

79,735 unique entities. The dataset has been used as a testbed for classification [122], topic

modeling [150], and graph-based anomaly detection [190], [209], among other tasks.
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Figure 2.2: Global receiver distribution (left) and some examples of local degree distribu-
tions (right). There is variation in the shape of these distributions; the HVCM accounts
for and parameterizes this difference in behavior when compared with the global degree
distribution.

Figure 2.2 shows the global receiver degree distribution, as well as the local receiver

distributions for the six senders with the largest number of emails. There is significant vari-

ation in behavior of the local degree distributions, both in comparison to themselves and to

the behavior of the global degree distribution. This suggests that a modeling approach that

allows for these differences is critical to accurately capturing the behavior of the entities,

and thereby allowing for superior data summarization, sound inferences and strong predic-

tion performance. While the Hollywood and GGP model would be unable to account for

this variation, the proposed HVCM is equipped to capture this behavior.
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2.7.2 Fit to the data
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Figure 2.3: Trace plots and histograms for global parameters of the Enron data. Mixing
occurs after 50 iterations or less. For the posterior predictive checks, the last 500 posterior
samples were used.

The Gibbs sampling algorithm introduced Section 2.6 is applied to the dataset for 1000

iterations, discarding the first 500 as burn-in. For this dataset, the following priors were

used:

pr(θ) ∼ Gamma(2, 1000), pr(α) ∼ Beta(1, 1)

pr(θs) ∼ Gamma(1, 20), pr(αs) ∼ Beta(1, 0.9)

Trace plots and histograms of the posterior samples of the global parameters α and θ

are displayed in Figure 2.3. Note that discarding 500 posterior samples as burn-in is rather

conservative, as the Gibbs sampler sampled chain mixes in less than 100 iterations.

We show the histogram of posterior means of the local parameters θs and αs in Fig-

ure 2.4, along with their priors. The θs parameters are shown on a log scale. These local

histograms show significant diversity among the posterior parameter estimates, as we are
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fitting local variations in behavior. For αs, the choice of prior has very little effect on the

posterior samples, except in the case of a small amount of local data for that particular

sender s. The choice of prior for θs has more influence on the posterior distribution; our

prior of Gamma(1, 20) is set to bias the local θs towards 0; this will allow for a better fit

on the local data than a prior with larger variance or mean; this result is borne out when

posterior predictive checks are applied to the local sender distributions, i.e., Figures 2.5

and 2.7.
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Figure 2.4: Histograms of local αs and θs. Prior pdfs are shown in orange. The θs prior is
set to fit the local distributions; the αs posterior means are robust to the prior distribution
chosen.

2.7.3 Posterior predictive checks (PPC) and model comparison

In this section, examples of posterior predictive model checks are shown in order to demon-

strate the goodness of fit of the proposed HVCM. Posterior predictive checks are often used

in order to verify that the proposed fitted model generates reasonable values on statistics

of interest; these checks can also be used to diagnose where the model fails to perform

well [85].

Multiple synthetic datasets are generated according to the posterior predictive distribu-

tion as prescribed in [85], and statistics of interest are calculated and compared with the
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statistics of the real data. The synthetic data is generated from the model with the pa-

rameters set to a posterior sample generated from the inference procedure. Since we are

interested in the ability of the model to account for variation in local behavior, we take

the sender sequence and number of receivers for each email as given, in order to directly

compare the local receiver distributions of the posterior predictive data with the real data.

In addition to generating posterior predictive checks for the fitted HVCM, they are also

generated for the Hollywood [62] and GGP [42] models for comparison. In the following

subsections, a variety of posterior predictive statistics are described, both for the global

dataset and for the local data per sender. These checks show that the proposed HVCM both

provides a good global fit of the data, in addition to significantly improving the fit to local

distributions compared to the Hollywood model. Table 2.2 details the 95% posterior pre-

dictive intervals for the global statistics, and Table 2.3 summarizes the posterior predictive

coverage rate for local distributions for the proposed model and the Hollywood model. The

statistics compared are number of unique receivers in the dataset and number of receivers

with degree 1, 10, and 100.

2.7.3.1 Number of unique receivers

The first statistic we consider is the number of unique receivers, both in the global dataset

as well as each local sender datasets. The number of unique receivers can be thought of as

a surrogate for sparsity, and thus an important statistic for a candidate model to replicate.

Figure 2.5 displays the results.

On the left plot, the PPC statistics are shown for the number of unique receivers in

the global dataset. Both the Hollywood model and the proposed HVCM perform well on

the global statistic. On the left are four examples of the PPC statistics for the number of

unique receivers on the local sender datasets with the most emails. Only the results from

the proposed HVCM is shown, because neither the GGP model nor the Hollywood model

is able to take into account variation among the local distributions; if the sender labels
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Figure 2.5: PPC Statistics for number of unique receivers, global (left) and examples of
local (right).

are attached post-hoc to the synthetic data generated from the GGP or Hollywood model,

they are completely unable to replicate any local behavior statistics. The HVCM clearly

accounts for the varying local behavior, even when that local behavior is unusual (in the

case of sender 58937). The superiority of the model compared to the Hollywood model is

clearly shown in Table 2.3, as the proposed model’s local posterior predictive intervals in

the local distributions covers the real values 99% of the time, as opposed to the Hollywood

model’s coverage rate of 39%.

2.7.3.2 Degree distribution

An important global behavior to capture is the global degree distribution. In order to evalu-

ate this fit, posterior predictive intervals of the number of nodes with degree 1, 10, and 100

are shown in Table 2.2. Note that the HVCM performs the best, where the real number of

receivers with degree 10 are within the PP interval. Figure 2.6 shows this result. When com-

paring the degree distributions, it is also clear that the Enron data does not perfectly align

with the posterior predictive example, as the synthetic data overestimates the number of

receivers with degree 1 and underestimates the number of receivers with degree 100. How-

ever, it is also clear that this model fit is still superior to both comparators, via Table 2.2.

Further, Table 2.3 demonstrates that the coverage for the posterior predictive intervals is
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Figure 2.6: Comparison of degree distribution between a posterior predictive sample from
the proposed model and the real data (left) and PPC of the number of receivers with degree
10.

much more robust in the proposed model for each of the degree statistics. Figure 2.7 also

compares local degree distributions between the HVCM and the real data. In the both the

global and local case, the HVCM is able to better replicate the degree distribution.
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Figure 2.7: Comparison of HVCM and Hollywood model for local distributions.
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Unique Receivers
Receivers with
degree 1

Receivers with
degree 10

Receivers with
degree 100

HVCM (69881, 74299) (21504, 23022) (1057, 1207) (30, 56)
Hollywood Model (69382, 71671) (23031, 23997) (893, 1022) (31, 59)

GGP Model (61309, 64175 ) (20653, 22006) (778, 898) (26, 51)
Actual Value 70572 16495 1174 15

Table 2.2: Posterior predictive confidence intervals (95%) for global statistics.

Unique Receivers
Receivers with
degree 1

Receivers with
degree 10

Receivers with
degree 100

HVCM 19725 / 19752 18233 / 19752 808 / 960 14 / 22
Hollywood Model 7652 / 19752 7652 / 19752 48 / 960 1 / 22

Table 2.3: Posterior predictive coverage rates of the local distributions when using the 95%
posterior predictive interval.

2.7.3.3 Node sharing across local distributions

In order to visualize how effectively the proposed HVCM is capturing the varying depen-

dencies between the local and global distributions, we count the number of receivers that

are seen in a particular number of local sender distributions. This allows for direct com-

parison of the effectiveness of the models to capture the interdependency and interaction

among the local datasets. Figure 2.8 shows the results.
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Figure 2.8: Distribution of nodes that have been in x number of local sender distributions.
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It is quite clear that the proposed HVCM replicates the observed behavior in the real

data, while both the GGP and Hollywood models fail to capture the degree of pooling

across the local datasets. Specifically, the other models seem to overestimate the rate at

which receivers are shared across the local distributions.

2.7.3.4 L1 distance from degree distribution
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Figure 2.9: Histograms of L1 distance between degree distributions of synthetic PPC
datasets and Enron global degree distribution. The proposed model better captures the
distribution than the Hollywood model and GGP model.

With our posterior predictive samples, we can also directly examine the difference in

distribution between synthetic data and the real data. Figure 2.9 shows histograms of the

TV distance between the global degree distributions of the synthetic data generated from

the posterior predictive distribution and the real dataset. Again, the proposed HVCM leads

to an improvement over the Hollywood model and GGP model.

2.8 ArXiv dataset

In this section, a larger and more complex dataset is used to demonstrate the flexibil-

ity of the proposed HVCM. The hierarchical exchangeable model is applied to the arXiv

dataset https://archive.org/details/arxiv-bulk-metadata, which con-

tains nearly all arXiv articles from 1986 to 2017. Like the Enron dataset, the arXiv data has

a hierarchical structure — each article is required to have at least one associated subject.
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However, unlike the email dataset, which had only one sender per email, each article may

have more than one subject. Our proposed model is well suited to this case of multiple

entities and the data can still be appropriately represented by Equation (2.3). Further, our

model allows for the direct study of interdisciplinarity among authors and overlap among

the subject classes on arXiv.

The arXiv subjects have been divided into 11 main classes; the full list can be found

on https://arxiv.org/help/prep. In order to reduce the effect of author name

ambiguity, we restricted ourselves to articles which have at least one subject from the

math, cs, stat, and physics subject classes. A full description of the subjects

of interest is found in Section A.4 of the appendix. Figure 2.10 shows a degree distribution

for the subjects, along with a histogram of the number of subjects per article. In total, there

are 510812 scientific articles with 413029 unique authors and 130 unique subjects, There

is also a broad range of subject frequencies, with the most popular subject being math-ph

(mathematical physics) with 47942 articles, and the least popular subject cs.GL (general

literature) with 130 articles.
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Figure 2.10: Degree distribution of subjects, log scale. This degree distribution does not
exhibit a power-law. The proposed HVCM accounts for this extra complexity. (αs are not
constrained to be equal to 1.)

We apply our posterior sampling methods found in Section 2.6, and in particular use

the approximate method of calculating the posteriors of the indicator variables Zi using the
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methods described in Section 2.6.3. Trace plots of posterior estimates of certain parameters,

posterior predictive checks for the data and other details of the inference can be found in

Section A.4 of the appendix

2.8.1 Subject overlap

The fitted model allows us to explore the amount of overlap between arXiv subjects.

Two subjects are considered overlapping if the model has difficulty distinguishing be-

tween them when they are used as labels for the same article. This difficulty can be mea-

sured using the Shannon entropy, which is defined over discrete probability distributions

p = [p1, p2, . . . , pk] as:

H(p1, p2, . . . , pk) = −
∑
k

pk log2 pk.

Entropy is at its maximum when the distribution p is the uniform distribution, i.e., when

all outcomes are equally likely. In order to estimate subject overlap for subjects s1 and s2,

every article which lists s1 and s2 among its subjects is found, and the entropy of the

posterior mean of the Zi distribution given that the subject is either s1 or s2 is calculated,

and the entropy is averaged over the articles. This score, SO(s1, s2) is computed as:

SO(s1, s2) =
1

|{S̄i : s1, s2 ∈ S̄i}|
∑

i:s1,s2∈S̄i

H(pr(Zi = s|{S̄i, R̄i}, Zi ∈ {s1, s2})) (2.21)

Figure 2.11 shows a heatmap of the subject overlap scores for subjects that are seen

in the same article at least 100 times. The subjects are ordered according to a normalized

spectral clustering [166], using the subject overlap matrix SO as the affinity matrix, and

setting the number of clusters to 6.

From this analysis, we conclude the following. Cluster 1, which includes cs.AI (Arti-

ficial Intelligence) and cs.IR (Information Retrieval), is a group of subjects that pertain to
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Figure 2.11: Heatmap of two-way entropy per article. For each pair of subjects s1, s2,
and every article that contains both s1 and s2, the entropy of pr(Zi = z|Zi ∈ {s1, s2}) is
calculated and summed. Finally, each entry is normalized by the total number of occurences
of s1 and s2 appearing together in the same article.

algorithmic approaches to artificial intelligence. Note that this cluster is differentiated from

cluster 5, which tends to represent more theoretical papers that rely heavily on statistical

techniques; this cluster includes math.ST (Statistical Theory), stat.ML (Machine Learning),

and stat.ME (Methods). Cluster 2 can be considered the core math cluster, which encapsu-

lates many pure and applied math subjects. Similarly, cluster 3 is the core computer science
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cluster, which are the computer science subjects that generally don’t use statistics such as

cs.SE (Software Engineering) and cs.CE (Computer Engineering). Cluster 4 is the core

physics cluster, with the subjects of physics that tend not to be interdisciplinary outside of

physics as other physics subjects. Finally, cluster 6 consists of subjects that involve the

philosophy, teaching or history of physics. Table 2.4 lists the pairs of subjects with the

most overlap according to the entropy score 2.21. Note that these pairs correspond with the

general intuition of subjects that would have a large degree of interdisciplinarity.

Table 2.4: Pairs of subjects with highest subject overlap score.

s1 s2 SO(s1, s2)

stat.ME (Methods) stat.CO (Computation) 0.509
cs.SE (Software Engineering) cs.HC (High Perf. Comp.) 0.507

physics.class-ph (Classical Physics) physics.ed-ph (Education) 0.504

We compare these results with results of a direct application of a spectral clustering

algorithm to the co-authorship network in Section A.4 of the appendix. This direct appli-

cation of spectral clustering to the data is unable to recover the meaningful groupings that

the proposed HVCM produces.

2.9 Concluding remarks

This chapter has presented the class of exchangeable structured interaction models. By ex-

ploiting the common hierarchical nature of structured network data, complex models with

both appropriate invariance and empirical properties are introduced. The canonical HVCM

captures partial pooling of information, and can model complex local-behavior with global

power-law degree behavior. A Gibbs sampling algorithm is proposed and applied to the

Enron e-mail and arXiv datasets. While the focus of this chapter has been on e-mail and

similarly structured interaction datasets, extensions to more complex examples will be in

considered future work. This chapter lays the foundation for how the interaction exchange-

ability framework can account for complex behavior. Of course, many interaction net-
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works occur with time-stamps; therefore, extensions to account for temporal dependence

is required and will be an important next step.
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CHAPTER 3

Learning to Bound the Multi-class Bayes Error

with Graph Based Methods

In the context of supervised learning, meta learning uses features, metadata and other in-

formation to learn about the difficulty, behavior, or composition of the problem. Using this

knowledge can be useful to contextualize classifier results or allow for targeted decisions

about future data sampling. In this chapter, we are specifically interested in learning the

Bayes error rate (BER) based on a labeled data sample. Providing a tight bound on the BER

that is also feasible to estimate has been a challenge. Previous work [230] has shown that

a pairwise bound based on the sum of Henze-Penrose (HP) divergence over label pairs can

be directly estimated using a sum of Friedman-Rafsky (FR) multivariate run test statistics.

However, in situations in which the dataset and number of classes are large, this bound is

computationally infeasible to calculate and may not be tight. Other multi-class bounds also

suffer from computationally complex estimation procedures. In this chapter, we present

a generalized HP divergence measure that allows us to estimate the Bayes error rate with

log-linear computation. We prove that the proposed bound is tighter than both the pairwise

method and a bound proposed by Lin [135]. We also empirically show that these bounds

are close to the BER. We illustrate the proposed method on the MNIST dataset, and show

its utility for the evaluation of feature reduction strategies.
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Symbol Description
(x, y) Observed feature-label pair
(X, Y ) Random feature-label pair
p1, p2, . . . , pm Prior label probabilities
f1, f2, . . . , fm Class conditional feature pdfs
εm Bayes error rate

Table 3.1: Glossary of commonly used symbols.

3.1 Introduction

Meta learning is a method for learning the intrinsic quality of data directly from a sample

of the data, metadata, or other information [44], [191]. The purpose of meta learning is to

collect knowledge that might be helpful at other levels of processing and decision-making.

Examples where meta learning is applied include sequential design of experiments [41], re-

inforcement learning [95], and sensor management [233] in the fields of statistics, machine

learning, and systems engineering, respectively. In supervised learning, and particularly for

multi-class classification, one form of meta learning is to learn bounds or estimates on the

Bayes error rate (BER). The BER is the minimal achievable error probability of any clas-

sifier for the particular learning problem, and knowledge of it can be used at other stages

of meta learning, such as in the selection of the classifiers, model selection, and feature re-

duction. Hence, finding computable bounds and approximations to the BER is of interest,

and is the problem we consider in this chapter.

Consider the problem where a feature vector X is labeled over m classes C1, . . . , Cm.

Available are i.i.d. pairs {(xi, yi)}ni=1, called training data, where xi is a realization of

the random vector (feature) X ∈ Rd and yi is a realization of the random variable (label)

Y ∈ {1, 2, . . . ,m}. Assume the prior label probabilities pk = P (Y = k), with
m∑
k=1

pk = 1

and the conditional feature densities fk(x) = f(x|Y = k), for k = 1, . . . ,m. Then the

Bayes error rate is given by

εm = 1−
∫

max{p1f1(x), p2f2(x), . . . , pmfm(x)} dx. (3.1)
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This represents the error achieved by the Bayes classifier, gBayes that minimizes the average

0 − 1 loss. The Bayes classifer assigns an estimated class label ŷ to an observation x

according to the maximum a posteriori (MAP) rule

ŷ = gBayes(x) = arg max
k∈{1,2,...,m}

P (Y = k|X = x).

Many different upper and lower bounds on the BER (3.1) exist for the case of m = 2

classes, and many of these are related to the family of f -divergences. A bound based on

Chernoff α-divergence has been proposed in [53], but in general it is not very tight in the

finite sample regime. In [26], a tighter bound for the 2-class BER using Henze-Penrose [99]

divergence was proposed. The HP bound has the advantage that it can be directly estimated

from the training data using a minimal spanning tree. The same framework can be extended

in a pairwise fashion to the m-class multi-class classification problem. However, when m

is relatively large, the derived pairwise bounds are loose and often times trivial [236]. The

method proposed in this chapter alleviates this problem by introducing new bounds based

on a generalized Henze-Penrose measure adapted to m-class problem, and whose tightness

does not diminish asm increases. Additionally, the new bounds improve upon other bounds

that were designed specifically for the multi-class problem, such as the generalized Jensen-

Shannon (JS) divergence bound [135].

Most approaches to estimation of bounds on Bayes error use plug-in, also called substi-

tution, estimators. These approaches require estimation of the multivariate feature densities

followed by evaluation of the BER bounds using these estimated densities in place of the

true densities. Recently, approaches to estimating BER bounds using direct estimators

have been proposed. For example, graph-based BER bound estimation approaches bypass

density estimation entirely, producing an estimator of the information divergence using

geometric functions of the data. These procedures scale linearly in dimension, resulting

in faster computation than plug-in methods for high dimensional features. In the original
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2-class setting, as shown in [26], bounds based on Henze-Penrose divergence can be es-

timated directly from data by employing the Friedman-Rafsky (FR) run test statistic [81],

[99], which computes a minimal spanning tree (MST) over the data, and counts the number

of edges that connect dichotomous data points. A brute force extension of the FR approach

to the m-class classification problem would require an MST computation for each pair

of classes, or O(m2) MSTs, which significantly reduces its computational tractability for

large m. The extension proposed in this chapter also uses a graph-based estimation proce-

dure, but only requires a single MST calculation on the entire dataset. Thus, the proposed

approach is more computationally efficient when m and n are large.

3.1.1 Related work

Broadly defined, meta learning is a set of methods of learning from knowledge that can be

used to improve performance or understanding of the problem. Estimating the Bayes multi-

class classification error is a meta learning problem. The principles behind the frameworks

proposed in [136] and [83] have been utilized to estimate the multi-class BER by bound-

ing the BER by a sum of pairwise BERs for each pair of class labels. There exist many

useful bounds on the pairwise BER that are based on information divergence measures,

i.e., measures of dissimilarity between two distributions. Several bounds for the pairwise

BER have been proposed, including: Chernoff bound [53]; Bhattacharyya bound [117];

and HP-divergence [26]. The Henze-Penrose divergence yields tighter bounds on the BER

than those based on the Bhattacharya distance for equal label priors. For the multi-class

BER, the sum of pairwise bounds given in [26] was proposed.

Another approach to bounding the BER of multi-class classifiers uses the Jensen-Shannon

(JS) divergence. The JS-divergence assigns a different weight to each conditional proba-

bility distribution and this inspired Lin to propose a bound for the binary BER where the

weights depend on the priors. The generalized multi-class Jensen-Shannon divergence is

related to the Jensen difference proposed by Rao [196], [197]. In [135], the author pro-
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posed a generalized JS-divergence that was used to derive a bound on the Bayes error rate

for multi-class classification.

In the nonparametric setting, the most popular approach for estimating bounds has been

plug-in estimators, which require estimation of probability densities that are subsequently

“plugged into” the expression for the divergence function, [154]–[156]. These approaches

are generally multi-step procedures and computationally expensive, especially in high di-

mensions [155]. In [168], Nguyen et al. proposed a divergence estimation method based on

estimating the likelihood ratio of two densities that achieves the parametric mean squared

error (MSE) convergence rate when the densities are sufficiently smooth.

Direct estimation approaches bypass density estimation, producing an estimator of the

information divergence using geometric functions of the data. As previously mentioned,

the MST-based Friedman-Rafsky two sample test statistic [81], [99] is an asymptotically

consistent estimator of the HP-divergence, which can then be used to estimate upper and

lower bounds for the 2-class classification problem [26]. There are other graph-based es-

timators that have been proposed in the literature. In [98], Henze proposed a graph-based

estimator for HP-divergence that employs the K-nearest neighbor (K-NN) graph instead of

the MST. The authors of [158] developed an approach for estimating general f -divergences

called the Nearest Neighbor Ratio (NNR), also using K-NN graphs. In [172] the authors

developed a general divergence estimator based on Locality Sensitive Hashing (LSH). In

[237], the authors showed that a cross match statistic based on optimal weighted matching

can also be used to directly estimate the HP divergence. None of these papers on geometric

methods proposed extensions to multi-class classification, which is the main contribution

of this chapter.

3.1.2 Contribution

We introduce a computationally scalable and statistically consistent method for learning

to bound the multi-class BER. First, we propose a novel measure, the generalized Henze-
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Penrose (GHP) integral, for bounding multi-class BER. We show how this generalized

integral can be used to calculate bounds on the Bayes error rate, and prove that they are

tighter than both the pairwise and JS multi-class BER bounds. Further, we empirically

show that the bounds’ performance is consistent and is robust to sample size and the number

of classes.

Our second contribution is a scalable method for estimating the GHP integral, and sub-

sequent estimation of the BER bounds. The proposed algorithm uses a single global min-

imal spanning tree (MST) constructed over the entire dataset. We show that this is more

computationally efficient than the pairwise approach, which must computeO(m2) pairwise

MSTs.

3.1.3 Organization of the chapter

The chapter is organized as follows. In Section 3.2.1 we briefly review the HP divergence

and propose the generalized HP-integral (GHP) measure. The motivation and theory for

the various bounds such as the pairwise HP divergence and generalized JS divergence for

the multi-class Bayes error is reviewed in Section 3.3, and a new bound based on our GHP

measure is given. We numerically illustrate the theory in Section 3.5. In Section 3.6 we

apply the proposed method to a real dataset, the MNIST image dataset. Finally, Section 3.7

concludes the chapter. The main proofs of the theorems are found in Appendix B.

3.2 The divergence measure and generalizations

In this section we recall the Henze-Penrose (HP) divergence between pairs of densities and

define a generalization for multiple densities (≥ 2) that will be the basis for bounding the

multi-class BER called the Generalized HP (GHP) integral.
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3.2.1 Henze-Penrose divergence

For parameters p ∈ (0, 1) and q = 1 − p consider two density functions f and g with

common domain Rd. The Henze-Penrose divergence D(f1, f2) is given by

D(f, g) =
1

4pq

[∫ (
pf(x)− qg(x)

)2

pf(x) + qg(x)
dx− (p− q)2

]
. (3.2)

The HP-divergence (3.2), first introduced in [25], has the following properties: (1) 0 ≤

D ≤ 1, (2) D = 0 iff f(x) = g(x). Note that the HP-divergence belongs to the f -

divergence family [10], [63], [161].

In the multi-class classification setting, as defined in the introduction, consider a sample

of i.i.d. pairs (xi, yi), i = 1, . . . , n, where yi ∈ {1, . . . ,m} are class labels with prior prob-

abilities {pk}mk=1 and, given yi = k, xi has conditional density fk. Define p̃ij = pi/(pi+pj).

Note that p̃ij 6= p̃ji and p̃ij + p̃ji = 1. Let S(i) be the support set of the conditional distribu-

tion fi. The Henze-Penrose (HP) divergence measure between distributions fi and fj with

union domain S(ij) = S(i) ∪ S(j) is defined as follows (see [25], [26], [99]):

D(fi, fj) =
1

4p̃ij p̃ji

[ ∫
S(ij)

(
p̃ijfi(x)− p̃jifj(x)

)2

p̃ijfi(x) + p̃jifj(x)
dx− (p̃ij − p̃ji)

2
]
. (3.3)

An alternative form for D(fi, fj) is given in terms of the HP-integral:

HPij := HP
(
fi, fj

)
=

∫
S(ij)

fi(x)fj(x)

pifi(x) + pjfj(x)
dx, (3.4)

yielding the equivalent form to (3.3)

D(fi, fj) = 1− (pi + pj)HPij.
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In [26] it was shown that 0 ≤ D(fi, fj) ≤ 1, and that the HP-integral is upper bounded by

HP
(
fi, fj

)
≤ (pi + pj)

−1.

3.2.2 Generalized HP-integral

Define the union of all support sets as S =
m⋃
k=1

S(k) and the difference between the m-

fold support set and the 2-fold support set S(ij) as S(ij)
= S

/
S(ij). We denote f (m)(x) the

marginal distribution of X,

f (m)(x) :=
m∑
k=1

pkfk(x) =
m∑
k=1

pkf(x|y = k).

Define the generalized HP-integral (GHP-integral) by

GHPm
ij := GHPm

(
fi, fj

)
=

∫
S
fi(x)fj(x)

/
f (m)(x) dx. (3.5)

The following theorem establishes a relation between the HP-integral and the GHP-integral:

Theorem 3.2.1. Consider conditional probability densities f1, . . . , fm with priors p1, . . . , pm

such that p1 + p2 + · · · + pm = 1. The HP-integral and the GHP-integral are related as

follows:

(a) If
(
S(i) ∪ S(j)

)
∩
⋃
k 6=i,j

S(k) = ∅, then

HP(fi, fj) = GHPm
(
fi, fj

)
, (3.6)

(b) If
(
S(i) ∪ S(j)

)
∩
⋃
k 6=i,j

S(k) 6= ∅, then there exists a constant C depending only on

priors p1, p2, . . . , pm such that

HP(fi, fj) ≤ GHPm
(
fi, fj

)
+ C

(
1−D

(
p̃ijfi + p̃jifj,

∑
k 6=i,j

p̃ijk fk

))
, (3.7)

57



where p̃ij = pi/(pi + pj) and p̃ijk = pk
/∑
r 6=i,j

pr.

The full proof of Theorem 3.2.1 is given in Appendix B. Part (a) can be easily derived.

The proof of part (b) depends on the fact that there exists a constant C1 depending on the

pi and pj such that for every fi and fj

fi(x)fj(x) ≤ C1 (pifi(x) + pjfj(x))2 , (3.8)

and

D
(
p̃ijfi + p̃jifj,

∑
k 6=i,j

p̃ijk fk

)
= 1− 1

(pi + pj)
∑
r 6=i,j

pr

∫
gij(x) dx, (3.9)

where p̃ij and p̃ji are as before, p̃ijk = pk
/∑
r 6=i,j

pr, and

gij(x) := (pifi(x) + pjfj(x))
∑
k 6=i,j

pkfk(x)
/
f (m)(x). (3.10)

Theorem 3.2.1 implies that the HP divergence (3.7) increases when the support set of

samples with labels i and j are nearly disjoint from the support sets of the the other la-

bels k 6= i, j k = 1, . . . ,m. In this case the HP-integral becomes closer to the GHP-

integral. Specifically, (3.7) approaches (3.6) as the intersection between support sets S(ij)

and
⋃
k 6=i,j

S(k) decreases, i.e. the conditional distributions become less overlapping.

3.3 Bounds on the Bayes error rate

Before introducing the new bound on multi-class BER, we first review the pairwise bounds

on the multi-class Bayes error rate given by Berisha et. al. [230] and by Lin [135].
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3.3.1 Pairwise HP bound

For the case of m classes the authors in [230] have shown that the multi-class BER εm in

(3.1) can be bounded by

2

m

m−1∑
i=1

m∑
j=i+1

(pi + pj)εij ≤ εm ≤
m−1∑
i=1

m∑
j=i+1

(pi + pj)εij, (3.11)

where εij represents the pairwise Bayes risk of the two class sub-problem of classifying

between classes i and j:

εij =

∫
min

{
p̃ijfi(x), p̃jifj(x)

}
dx. (3.12)

In [26], it has been shown that

1

2
− 1

2

√
up̃ij(fi, fj) ≤ εij ≤

1

2
− 1

2
up̃ij(fi, fj), (3.13)

where

up̃ij(fi, fj) = 4p̃ij p̃ji D(fi, fj) + (p̃ij − p̃ji)2, (3.14)

and D(fi, fj) is defined in (3.3). Using both (3.11) and (3.13), we obtain bounds for the

multi-class Bayes error rate. While these bounds have been successfully applied [81],

[26], it has the disadvantage of high computational complexity due to the presence of
(
m
2

)
summands in (3.11).

3.3.2 JS bound

The generalized Jensen-Shannon divergence is defined as

JS(f1, f2, . . . , fm) = H̄

(
m∑
k=1

pkfk

)
−

m∑
k=1

piH̄(fi),
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where H̄ is the Shannon entropy function

H̄(f) = −
∫
f(x) log f(x) dx.

In [135] this divergence measure was used to obtain a bound on the multi-class Bayes error

rate. The Bayes error rate εm is upper bounded by

εm ≤ 1

2

(
H(p)− JS(f1, f2, . . . , fm)

)
, (3.15)

and is lower bounded by

εm ≥ 1

4(m− 1)

(
H(p)− JS(f1, f2, . . . , fm)

)2
. (3.16)

Here H(p) = −
m∑
k=1

pk log pk is Shannon entropy and JS is generalized Jensen-Shannon

divergence.

The bounds in (3.15) and (3.16) can be approximated by plug-in estimation or by direct

methods, such as the NNR method [171] or other graph methods [101]. We will show that

the JS bound suffers from lack of tightness.

3.3.3 Proposed multi-class Bayes error probability bound

To simplify notation, denote

δij :=

∫
pipjfi(x)fj(x)

pifi(x) + pjfj(x)
dx, δmij :=

∫
pipj fi(x)fj (x)

f (m)(x)
dx,

and note that δij =
(pi+pj)

4

(
1−up̃ij(fi, fj)

)
, where up̃ij is defined in (3.14) and δij ≥ δmij .

Theorem 3.3.1. For given priors p1, p2, . . . , pm and conditional distributions f1, f2, . . . , fm,
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the multi-class BER εm satisfies

εm ≤ 2
m−1∑
i=1

m∑
j=i+1

δmij . (3.17)

And is lower bounded by δmij as

εm ≥ m− 1

m

1−

(
1− 2

m

m− 1

m−1∑
i=1

m∑
j=i+1

δmij

)1/2
 . (3.18)

In the following theorem we show that the proposed upper and lower bounds are tighter

than the JS upper (3.15) and lower (3.16) bounds.

Theorem 3.3.2. For given priors p1, p2, . . . , pm and conditional distributions f1, f2, . . . , fm,

for m ≥ 3

εm ≤ 2
m−1∑
i=1

m∑
j=i+1

δmij ≤
1

2

(
H(p)− JS(f1, f2, . . . , fm)

)
. (3.19)

And

εm ≥ m− 1

m

1−

(
1− 2

m

m− 1

m−1∑
i=1

m∑
j=i+1

δmij

)1/2


≥ 1

4(m− 1)

(
H(p)− JS(f1, f2, . . . , fm)

)2
.

(3.20)

Theorem 3.3.3 shows that proposed upper and lower bounds are tighter than bounds in

(3.11), i.e., the pairwise (PW) bounds.

Theorem 3.3.3. For given priors p1, p2, . . . , pm and conditional distributions f1, f2, . . . , fm,

the multi-class classification BER εm is upper bounded

εm ≤ 2
m−1∑
i=1

m∑
j=i+1

δmij ≤ 2
m−1∑
i=1

m∑
j=i+1

δij. (3.21)
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and is lower bounded by δmij as

εm ≥ m− 1

m

1−

(
1− 2

m

m− 1

m−1∑
i=1

m∑
j=i+1

δmij

)1/2


≥ 2

m

m−1∑
i=1

m∑
j=i+1

(pi + pj)

[
1

2
− 1

2

√
up̃ij(fi, fj)

]
.

(3.22)

where up̃ij is given in (3.14).

The full proofs of Theorems 3.3.1, 3.3.2, and 3.3.3 are given in Appendix B. To derive

the inequalities (3.17)-(3.22) a set of general inequalities for posterior probabilities ai :=

p(i|x) are established.

The proof of the tightness results (3.19)-(3.22) for JS and pairwise upper and lower

bounds requires a different approach that involves deriving upper and lower bounds on the

summed posterior probabilities,

m−1∑
i=1

m∑
j=i+1

p(i|x)p(j|x).

This approach provides tighter upper and lower bound that those given in [135] and [230].

3.4 Learning the bounds from data

Here we review the pairwise Friedman-Rafsky (FR) statistic and introduce a generalized

FR statistic. Given a labeled sample X = {(xi, yi)}ni=1 define the subset of samples having

label k as: X(k) = {(xi, yi)}ni=1,yi=k
, k = 1, . . . ,m. The cardinality of the subset X(k) is

nk =
∑n

i=1 I(yi = k) where I(B) denotes the indicator function of eventB. We denote the

pairwise FR statistic by Rni,nj and the generalized FR statistic by R
(ij)
n1,nj that are computed

as follows:
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Figure 3.1: Estimating Rni,nj for three classes. A set of m(m− 1)/2 Euclidean MSTs are
computed for each unordered pair of classes {(i, j)}i>j , and then the dichotomous edges
(in red) are counted to find Rni,nj .

1. Rninj := Rninj(X) is the number of dichotomous edges in a Euclidean minimal

spanning tree (MST) spanning the samples in the pairwise union of samples with

labels i and j , X(i) ∪X(j) ∈ S(i) ∪ S(j), where X(k) = {(xi, yi)}ni=1,Yi=k
. A dichoto-

mous edge is an edge that connects a sample from class i to a sample from class j.

The pairwise FR statistic Rninj for three classes is illustrated in Figure 3.1.

2. R
(ij)
ni,nj := R

(ij)
ni,nj(X) is the number of dichotomous edges connecting a sample from

class i to a sample from class j in the global MST constructed on all samples with

all classes 1, 2 . . . ,m i.e.
m⋃
k=1

{(xi, yi)}ni=1,yi=k
or X(1) ∪X(2) ∪ · · · ∪X(m) ∈ S(1) ∪

S(2) ∪ . . . S(m) where X(k) = {(xi, yi)}ni=1,yi=k
, k = 1, . . . ,m. Figure 3.2 represents

the generalized FR statistic for three classes.

Using the theory in [99] and [26], the estimator Rni,nj is a statistically consistent estimator

of the pairwise HP-bound for classifying class i vs. class j. This yields an estimate of the
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Figure 3.2: Estimating R
(ij)
ni,nj for three classes. A single MST is constructed over all classes

i = 1, 2, 3 of points. For each (i, j), count the edges connecting points from classes i and j.
These edges are shown in 3 different colors each corresponding to the three types of pairs
(i, j) = (1, 2), (2, 3), (1, 3).

bounds (3.11) on multi-class BER, requiring the construction of
(
m
2

)
MSTs spanning all

distinct pairs of label classes. The next theorem implies that R(ij)
ni,nj can be used to estimate

the tighter bound on multi-class BER given in Theorem 3.3.1 using only a single global

MST.

Theorem 3.4.1. Let X = {(xi, yi)}ni=1 be an i.i.d. m-class labeled sample and nk =∑n
i=1 I(yi = k), be the cardinality of samples with label k. For distinct classes i, j let

i, j = 1, . . . ,m, ni, nj →∞, n→∞ such that ni/n→ pi and nj/n→ pj . Then

R
(ij)
ni,nj(X)

2n
−→ δmij (a.s.) (3.23)

The proof for Theorem 3.4.1 uses arguments similar to those used in [99] to establish

the convergence of the Friedman Rafsky two sample statistic, but generalized to more than

two labeled populations. Furthermore, using arguments similar to those in [237], it is
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also possible to establish convergence of the cross-match statistic by running the optimal

weighted matching graph over pairs of label classes. Details on the proof are given in the

Appendix B.

3.5 Simulation study

Here we illustrate the proposed method for learning bounds on Bayes error rate (BER).

Section 3.5.1 focuses on numerical comparison of the upper bounds in (3.11), (3.15), (3.17)

and lower bounds in (3.11), (3.16), (3.18). Section 3.5.2 focuses on the empirical estimation

of these bounds, including a comparison of runtime.

−2 0 2
−2
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2

−2 0 2

−2
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Figure 3.3: Example of generated data for experiments. The data on the left has 10 classes
whose means are arranged around a circle with mean parameter µ = 1. The data on the
right has 10 classes, with mean parameter µ = 2. In both cases, σ2 = 0.1, and both plots
show a sample of 5000 data points.

For each of the following simulations, data is generated in the following way: given

m classes with priors p1, p2, . . . , pm, the class conditional distributions are mean shifted

bivariate normal: fi ∼ N (µi, σ
2I). The means µi are arranged uniformly around the

circumference of a circle of radius µ:

µi =

[
µ cos

(
2π

i

m

)
, µ sin

(
2π

i

m

)]
.

Figure 3.3 shows two examples for 5000 points and 10 classes and σ2 = 0.1, with the

left plot having mean parameter µ = 0.7, and the right plot setting µ = 2. Unless stated
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otherwise, the feature dimension is d = 2.

3.5.1 Comparison of bounds
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Figure 3.4: Bounds on the Bayes error for m = 4 and uniform priors. We note that even
for a relatively small number of classes, the proposed new GHP upper and lower bound are
much tighter than the competitors. For this experiment, σ2 = 0.3.

This section uses the synthetic data described in Section 3.5.1 and Monte Carlo ap-

proximation to estimate the bounds. We first explore how the difficulty of the classification

problem affects the bounds. Figure 3.4 shows upper and lower bounds of the Bayes error

rate for each type of bound as a function of the mean parameter µ. Here, the number of

classes m is 4. Note that when µ is smaller and the classes are poorly separated (creating

a harder classification problem), both the Jensen-Shannon (JS) and pairwise (PW) upper

bounds perform poorly and become trivial, exceeding one. However, for relatively small

m, the pairwise lower bound remains fairly tight. The proposed GHP bounds are uniformly

better than either the JS or PW bounds, as predicted by the theory. Further, note that the

proposed bound is tight around the actual Bayes error rate (BER). Finally, as µ grows and

the classes become well separated, the JS and PW bounds become tighter to the Bayes error.

In light of Theorem 1, this makes sense for the pairwise bounds, as well separated classes
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(a) Upper bounds.
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Figure 3.5: Comparison of upper and lower bounds of BER for different number of classes
for the distribution illustrated in Figure 3.3. Shown is the exact Bayes misclassification er-
ror rate (BER) and three upper bounds including the Jensen-Shannon bound (JS), pairwise
HP bound (PW), and the proposed generalized HP bound (GHP). As m increases, the two
bounds, JS and PW, are not tight to the BER, unlike the proposed GHP, as m increases.

cause the pairwise Henze-Penrose divergence and the GHP integral to become equivalent.

Figure 3.5a and Figure 3.5b show the behavior of the bounds as a function of m. For

the upper bounds, we note that the JS and PW bounds become much looser as m increases.

On the other hand, the proposed GHP upper bound remains tight.

In Figure 3.5b, we note that the PW lower bound does perform better than the JS lower

bound, but the proposed GHP lower bound uniformly outperforms both. Note that, as

mentioned previously, all bounds become tighter as the classification problem becomes

easier (i.e., the classes become well separated).

The difference between the bounds and the BER, called the tightness of the bound as a

function of m is shown in Figure 3.6a and Figure 3.6b for upper bounds and lower bounds,

respectively. Figure 3.6a highlights our proposed GHP bound’s ability to stay close to the

BER, even as the class size continues to increase. In comparison, both the JS and pairwise

upper bounds continue to drift farther away from the Bayes error. Figure 3.6b shows a sim-
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ilar effectiveness in the proposed lower bound, although both the JS and pairwise bounds

have better behavior than in Figure 3.6a, due to the lower bounds being guaranteed to be

greater than or equal to 0.
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(a) Upper bounds.
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Figure 3.6: Tightness of upper and lower bounds vs. m, where tightness is quantified as the
absolute value of the difference between the bound and the true BER. This experiment was
performed for µ = 1. The pairwise upper bound quickly becomes useless as m increases.
The JS bound performs slightly better, but only our proposed GHP upper bound stays close
to the Bayes error. In the proposed GHP lower bound, there is a slight decrease in tightness
as m increases. However, it is much smaller in comparison with the pairwise and JS lower
bounds.

3.5.2 Statistical consistency and runtime

This section illustrates the improvement in both statistical accuracy and runtime perfor-

mance of the proposed generalized HP (GHP) approach as compared to the JS and pairwise

HP (PW) methods of [135] and [230].

Figure 3.7 Shows the MSE between the estimated and true upper bound as a function

of the number of samples n, for different feature dimensions d. The behavior of the lower

bound convergence has analagous behavior and is not shown. Note that as d increases,

the MSE grows, illustrating the well known curse of dimensionality for high dimensional

datasets.
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Figure 3.7: Convergence in MSE of MST estimate of the proposed GHP upper bound to
the true upper bound on BER. The simulation parameters were as in Figure 3.3 for µ = 0.7
and σ2 = 0.1, and the results were averaged over 100 trials. For d > 2, d − 2 dimensions
had zero mean with Gaussian noise having variance 0.1.

Figures 3.8a and 3.8b show the relative runtime of the proposed method in comparison

with the pairwise HP method. For each of these figures, we introduce a parameter γ, which

controls the prior class imbalance in the problem. For a particular γ and number of classes

m, we create priors p1 = γ, p2 = p3 = . . . = pm = (1 − γ)/(m − 1). For γ = 1/m,

all class probabilities are the same; there is no imbalance. A larger class imbalance will

cause the pairwise estimation procedure to perform many large MST calculations, which

significantly increases the runtime of the algorithm.

Figure 3.8a shows the relative runtime (PW method minus GHP method) as a function

of γ, for different m, along with the ratio of tightness of GHP compared with PW for the

upper bound of the BER. Here, we set n = 10000, µ = 1, σ2 = 0.3. Observe that for large

number of classes and small class imbalance γ, the pairwise method is slightly faster but,

in this regime PW yields a useless bound that is overly loose - the proposed GHP bound is

over 120 times tighter than the pairwise bound in this case. As γ grows, we see significant

relative speedup of the proposed GHP method relative to the other methods. From Figure

11 it is evident that, while the PW bound has faster computation time in the regime of small

γ (graph in bottom panel), it is very loose in this small γ regime (graph in top panel).
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Figure 3.8: (a) Relative runtime of pairwise and proposed GHP algorithm vs. class im-
balance parameter γ, and ratio of tightness of GHP compared with PW, where tightness is
defined by the upper bound minus the BER. For large class imbalance (large γ), and large
m, the proposed GHP method achieves significant speedup, while for small class imbal-
ance, the PW bound becomes overly loose. (b) Relative runtime of pairwise and proposed
GHP algorithm vs. class imbalance parameter γ. For large γ, and large sample size n, the
proposed method achieves significant speedup.

Figure 3.8b shows the relative runtime as a function of γ, for different sample sizes n,

with m = 10, µ = 1, and σ2 = 0.3. Similarly to Figure 3.8a, the greatest speedup occurs

when n and γ are large.

3.6 Real data experiments

We utilize our proposed bounds to explore feature generation for the MNIST dataset. The

MNIST dataset consists of grey-scale thumbnails, 28 x 28 pixels, of hand-written digits 0

- 9. It consists of a training set of 60,000 examples, and a test set of 10,000 examples. The
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digits have been size-normalized and centered in a fixed-size image. MNIST has been well

studied in the literature, and is known to have a low error-rate. To illustrate the utility of

the proposed BER bound learning approach, we estimate the Bayes error rate bounds as a

function of feature dimension. Specifically, we focus on PCA and a simple autoencoder.

The validity of the proposed lower bound is demonstrated by comparison to the accuracy of

three types of classifiers: the K-NN classifier, linear SVM, and a random forest classifier.
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Figure 3.9: Number of latent dimension for PCA vs. error rates and estimated lower bound.
The k-NN classifier test error (orange curve) approaching the proposed lower bound (green
curve) as the number of latent dimensions increases beyond 15, establishing that the k-NN
comes close to achieving optimal performance.

The PCA results are shown in Fig. 3.9. Plotted are the estimated lower bound for the

BER and the test error rates of the 3-NN and Random Forest classifier versus the number

of principal components used. As expected, the test errors of both classifiers are greater

than the lower bound for Bayes error. Further, it is evident that no more than 20 latent

dimensions are needed in order to minimize the lower bound, which is confirmed by the

behavior of the test errors of the classifiers implemented.

Table 3.2 shows Bayes error bounds and error rates for the MNIST feature sets. Autoencoder-
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Table 3.2: Bounds on the BER and classifier test error rates for different feature sets.

Bayes Error Bounds and Error Rates for MNIST Feature Sets
Features lower bound upper bound Linear SVM K-NN, K=3 Rand. For.
PCA-4 0.247 0.427 0.449 0.392 0.370
PCA-8 0.070 0.135 0.241 0.107 0.129

PCA-16 0.029 0.058 0.166 0.037 0.077
PCA-32 0.020 0.040 0.113 0.026 0.073

Autoencoder-4 0.290 0.486 0.662 0.442 0.412
Autoencoder-8 0.097 0.184 0.317 0.144 0.155
Autoencoder-16 0.041 0.082 0.213 0.058 0.099
Autoencoder-32 0.026 0.052 0.144 0.032 0.086

X or PCA-X are feature sets that use X latent dimensions or X principal components,

respectively. The autoencoder is a 1-layer autoencoder, and trained using Adagrad. Inter-

estingly, we see that PCA-32 feature set outperforms Autoencoder-32. More layers or a

convolutional model could assist the autoencoder in achieving lower bounds and test error

rates.

3.7 Conclusion

In this chapter, a new bound on the Bayes error rate of multiclass classification was intro-

duced. It was established by theory and simulation that the proposed bound is tighter than

both the pairwise Henze-Penrose bound and the generalized Jenson-Shannon bound. Fur-

thermore, a fast and efficient empirical estimator was presented that allows one to learn the

bound from training data without the need for density estimation. The estimation method is

based on the global minimal spanning tree that spans all labeled features over feature space,

allowing for a more computationally tractable approach than the standard practice of sum-

ming estimates of pairwise BERs. The proposed bound learning method was illustrated on

the MNIST dataset.
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CHAPTER 4

Mutual Information Estimation using

Dimension-Independent Graph Based Methods

Henze-Penrose divergence is a non-parametric divergence measure that can be used to esti-

mate a bound on the Bayes error in a binary classification problem. In this chapter, we show

that a cross-match statistic based on optimal weighted matching can be used to directly esti-

mate Henze-Penrose divergence. Unlike an earlier approach based on the Friedman-Rafsky

minimal spanning tree statistic, the proposed method is dimension-independent. The new

approach is evaluated using simulation and applied to real datasets to obtain Bayes error

estimates.

Symbol Description
(x, y) Observed feature-label pair
(X, Y ) Random feature-label pair
p0, p1 Prior label probabilities
f0, f1 Class conditional feature pdfs
ε Bayes error rate
G = (V,E,D) Weighted graph
V Vertex set
E Edge set
D Edge weights

Table 4.1: Glossary of commonly used symbols.
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4.1 Introduction

Many information theoretic measures have been applied to measure the discrimination be-

tween probability density functions. They have been used in various applications in signal

processing, classification, image registration, clustering and structure learning, see [94],

[96], [158], [226]. A special class of divergence measures, called f -divergences have the

property that the divergence functional f is convex and f(1) = 0. Among the different

divergence functions belonging to the f -divergence family, [10], [63] the Henze-Penrose

(HP) divergence has been of great interest due to its application to binary classification, in

particular to bound the Bayes error rate.

Let x1,x2, ...,xN ∈ Rd be realizations of random vector X and class labels y ∈ {0, 1}

which are reaalizations of the random binary variable Y , with prior probabilities p0 =

P (Y = 0) and p1 = P (Y = 1), and such that p0 + p1 = 1. Given conditional distributions

f0(x) and f1(x), the Bayes error rate is given by

ε =

∫
Rd

min
{
p0f0(x), p1f1(x)

}
dx. (4.1)

The Bayes error rate is the expected risk for the Bayes classifier, which assigns a given

feature vector x to the class with the highest posterior probability, and is the lowest possible

error rate of any classifier for a particular joint distribution. It is thus a reasonable measure

for assessing the intrinsic difficulty of a particular classification problem. By estimating

and bounding this value, we can then have a better understanding of the problem difficulty,

which allows the user to make more informed decisions.

We define the HP-divergence between f0 and f1, Dc(f0, f1) by

1

4c0c1

[∫
Rd

(
c0f0(x)− c1f1(x)

)2

c0f0(x) + c1f1(x)
dx− (c0 − c1)2

]
, (4.2)

where c0 ∈ (0, 1) and c1 = 1 − c0. Note that for all c0 and c1, 0 ≤ Dc(f0, f1) ≤ 1 and
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when f0 = f1 the HP-divergence becomes zero.

The authors of [26] showed that HP-divergence yields tighter bounds on the Bayes error

rate ε, given in (4.1), than those based on the Bhattacharya distance, [30]. In particular, the

following bound on the Bayes error rate holds:

1

2
− 1

2

√
up(f0, f1) ≤ ε ≤ 1

2
− 1

2
up(f0, f1), (4.3)

where up(f0, f1) = 4p0p1Dp(f0, f1) + (p0 − p1)2.

In this chapter we propose a new direct estimator for HP-divergence using a statistic

based on optimal weighted matching [201]. Matching for general graphs is a combinatorial

optimization problem that can be solved in polynomial time. In [201], the optimal weighted

matching was used to find a statistical test for equal posterior distributions using the cross

match statistic. We demonstrate that the same statistic described in that series of papers can

be utilized to estimate HP-divergence. We emphasize that the proposed weighted matching

estimator is completely different from weighted K-NN graph estimators.

The rest of the chapter is organized as follows. Section 4.2 briefly describes related

work on HP-divergence and optimal weighted matching. Section 4.3 defines the cross-

match statistic, and in Section 4.4 we prove that the cross-match statistic approximately

tends to the HP-divergence when samples sizes of two classes increases simultaneously

in a specific regime. Section 4.5 shows sets of simulations for our proposed method and

compares the Friedman-Rafsky (FR) and cross-match estimators experimentally, and we

estimate the Bayes error rate on a few real datasets. Finally, Section 4.6 concludes the

chapter.

4.2 Related work

Several estimators for HP-divergence have been proposed in the literature: Plug-in esti-

mates were introduced in [205] and later have been studied more in [155], [157], [159].
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Figure 4.1: An example of the cross-match statistics for two cases f0 = f1 (left-generated
from standard Gaussian distributions) and f0 6= f1 (right-Generated from Gaussian dis-
tributions with means [0, 0], [2, 2]). The total number of blue edges is the cross match
statistics.

Plug-in approaches estimate the underlying distribution function and then plug this value

into the divergence function. The drawback with the plug-in estimates is that these meth-

ods are not accurate near support boundaries and are also more computationally complex.

There have been a number of attempts to non-parametrically approximate divergence mea-

sures using graph-based algorithms such as minimal spanning tree (MST), [5], [240] and

k-nearest neighbors graphs (k-NNG), [23].

One of the most common direct estimators is based on Friedman-Rafsky (FR) multi-

variate test statistic [81]. This approach is constructed from the MST on the concatenated

data set drawn from sufficiently smooth probability densities. Henze and Penrose [99]

showed that the FR test is consistent against all alternatives. Therefore, the HP-divergence

has the appealing property that there exists an asymptotically consistent direct estimator in

terms of the FR test statistic, see [25], [26], [99]. The variance of the FR test statistic under

the assumption of equal distributions depends on the dimension of the data d, which may

be unknown, especially when the support of the densities is a common but unknown lower

dimensional manifold.

Optimal weighted matching is a well studied combinatorial optimization problem [183].

It has been used extensively in operations engineering. Previous statistical work using

weighted matching have derived useful applications of the cross-match test statistic in fields
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like biological networks [141], [201].

4.3 The cross-match test statistic

Consider N i.i.d. samples XN = {x1, . . . ,xN}, xi ∈ Rd and corresponding labels yi ∈

{0, 1}. Define y = (y1, . . . , yN), and further m =
N∑
l=1

yl, and n = N − m, so that m is

the number of samples in x with class 1, and n is the number with class label 0. Further,

we create D, a N × N Euclidean distance matrix, with Dij = ||xi − xj||. Without loss

of generality, we assume N is even, as we can always add a ‘ghost point’ xN+1, where

DiN+1 = 0, ∀i. In the following, we consider a complete weighted graph G = (V,E,D),

with the vertices V = 1, . . . , N representing the sample points x1, . . . ,xN , edges E =

{{i, j}, i, j ∈ V }, and weights for each edge {i, j} as Dij .

A complete matching M ⊂ E on a weighted graph is a set of edges such that no

two edges in M share a common vertex, and every vertex is used in the matching. The

complete minimum weighted matchingM∗ is defined as the matching onG such thatM∗ =

arg minM
∑

i,j∈M Dij . We note that this is similar to the FR test [81], which uses the same

matrix D to find the minimal spanning tree. The FR test statistic is the total number of

edges in the D-based MST connecting different labeled nodes.

Using this matching, we find the cross-match statistic, A(XN) which is the number of

edges that match dichotomous samples, i.e. samples with different class labels, that is

A(XN) =
∑

{i,j}∈M∗

(
yi(1− yj) + (1− yi)yj

)
. (4.4)

In Figure 4.1 we show two numerical examples. The left plot shows samples from two

equal distributions, and the right plot shows samples from differing distributions. Qualita-

tively, we see that A is much greater for the equivalent distributions than for the differing

distributions because the optimal matching tries to reduce long distances. This in turn will

reduce the number of edges between points with different labels.
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In Proposition 1 in [201], under the assumption of equal distributions, the expectation

and variance of A(x) are derived:

E[A] =
mn

N − 1
, V ar[A] =

2n(n− 1)m(m− 1)

(N − 3)(N − 1)2
. (4.5)

We note that the mean and variance of the cross-match statistic under equal distributions are

dimension-independent, but this is not true for the FR statistic, whose variance is dependent

on the degrees of the MST. The maximal degrees of the MST is in fact dependent on the

dimension d of the underlying samples, e.g., the MST has maximal degree 4 in d = 2

dimensions while its maximal degree is known to be between 13 or 14 in 3 dimensions

[199]. This dependence causes the FR statistic to perform poorly in higher dimensions. In

Section 4.5 we perform a set of experiments where dimension varies to demonstrate the

advantage of the cross-match statistic over the FR statistic.

4.4 HP-divergence estimation

Here we introduce the cross-match statistic as an estimate of the HP-divergence given

in (4.2). Assume that we have two sets of samples Xm = {X1, . . . ,Xm} and Un =

{U1, . . . ,Un} with two different labels. In order to show asymptotic convergence to HP-

divergence, we make the following assumption regarding the cross-match statistic (similar

to Lemma 1 in [99]).

Assumption 1: For disjoint sets Xm, Un and {s, t} we have

∣∣∣A(Xm ∪ {s, t} ∪ Un)−A(Xm ∪ Un)
∣∣∣ ≤ kd. (4.6)

where kd is a constant that may depend on d. This means that even if the optimal match-

ing changes a great deal, the number of edges that are between the two samples is still

approximately the same.
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We empirically check this assumption in Figure 4.2. We generate two sets of d-dimensional

samples from standard Gaussian with mean µ0 = [0]d, µ1 = [1]d and Σ0 = Σ1 = Id for

d = 2, 4, 6, 8. We plot the difference in cross-match statistic when adding two points (la-

beled byAdiff), and perform this test over varying sample size. We see thatA does not vary

significantly when adding a new sample in the tested cases.

Lemma 4.4.1. Let g : Rd × Rd → [0, 1] be a symmetric and measurable function, such

that for almost every x ∈ Rd, g(x, .) is measurable with x a Lebesgue point of the func-

tions f(.)g(x, .) and f(.). For each N , let ZN1 ,Z
N
2 , . . . ,Z

N
N be independent d-dimensional

variables with common density function fN convergent to f as N → ∞ and set ZN =

{ZN1 , . . . ,ZNN}. Consider the complete minimum weighted matching M∗ on ZN . Then

lim
N→∞

N−1E
∑∑
1≤i<j≤N

g(ZNi ,Z
N
j )1

{
(ZNi ,Z

N
j ) ∈M∗(ZN)

}
=

1

2

∫
Rd
g(x,x) f(x). (4.7)

Proof: For given x in a subset S ∈ Rd, the degree of vertex x inM∗(S) is one. Let x be

a Lebesgue point of f(.) and f(.)g(x, .) andZx
N be the point process {x,ZN2 ,ZN3 , . . . ,ZNN}.

Let B(x, r) =
{
y : ‖y − x‖ ≤ r

}
. Therefore, we can write

E
N∑
j=2

∣∣g(x,ZNj )− g(x,x)
∣∣1{ZNj ∈ B(x, N−1/d)

}
= (N − 1)

∫
B(x,N−1/d)

∣∣g(x,y)− g(x,x)
∣∣fN(y) dy

= (N − 1)
∫
B(x,N−1/d)

∣∣g(x,y)fN(y)− h(x,x)fN(x)

+g(x,x)(fN(x)− fN(y)
∣∣ dy,

(4.8)

Since x is a Lebesgue point of fN and g(x, .)fN(.) then (4.7) tends to zero. Note that the

degree of vertex in M∗(Zx
N) is one. For almost all x,

E
N∑
j=2

g(x,ZNj )1
{

(x,ZNj ) ∈M∗(ZxN)
}

= g(x,x) + o(1). (4.9)
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The function g has range [0, 1] so the left hand side of (4.9) is bounded by one. By the

dominated convergence theorem

N−1E
∑∑

1≤i<j≤N g(ZNi ,Z
N
j )1

{
(ZNi ,Z

N
j ) ∈M∗(ZN)

}

= 1
2
E

N∑
j=2

g(ZN1 ,Z
N
j )1

{
(ZN1 ,Z

N
j ) ∈M∗(ZN)

}
= 1

2

∫
x
fN(x)E

N∑
j=2

g(x,ZNi )1
{

(x,ZNj ) ∈M∗(ZN)
}
.

(4.10)

The last line in (4.8) tends to right hand side of (4.7). �
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Figure 4.2: The cross-match statistics difference with error bars at the standard deviation
from 50 trials for the Gaussian samples by adding two points.

The following theorem proves the direct estimate of HP-divergence based on A(XN).

Due to space limitations only an outline of the proof is given.

Theorem 4.4.2. As m → ∞ and n → ∞ such that m/N → p1 and n/N → p0, where

N = m + n. Denote Am,n := A(Xm ∪ Un) the cross-match statistic given by the optimal
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weighted matching over Xm and Un. Then under Assumption 1 we have

1−
(
N

m n

)
Am,n → Dp(f0, f1), a.s. (4.11)

Proof: The proof shares some similarity with the FR convergence proof of the HP-

divergence in [99]. The primary difference lies in handling the difference between the

cross-match statistic when nodes are added, i.e. (4.6). We use Lemma 4.4.1 and Pois-

sonization to prove (4.11).

Let Mm and Nn be Poisson variables with mean m and n such that m + n is even and

independent of one another and of Xi and Uj . Let X ′m and U ′n be the Poisson processes{
X1, . . . ,XMm

}
and

{
U1, . . . ,UNn

}
, respectively. Set A′m.n = A(X ′m ∪ U ′n), the cross-

match statistic. By (4.6), we have

∣∣∣A′m,n −Am,n∣∣∣ ≤ kd
(
|Mm −m|+ |Nn − n|

)
. (4.12)

Note that (m + n)−1E
∣∣A′m,n − Am,n| → 0. Poissonization makes the identities of the

points of X ′m ∪ U ′n conditionally independent, given their positions. For each m and n

let Zm,n1 ,Zm,n2 , . . . be independent discrete variables with common density fm,n(x) =

(mf0(x) + nf1(x))/(m + n). Let Wm,n be an independent Poisson variable with even

valued mean (m + n). Let Z ′m,n = {Zm,n1 , . . . ,Zm,nWm,n
} be a non-homogeneous Poisson

process of rate mf0 + nf1. Following the same arguments in [99], assign a mark from the

set {1, 2} to each point of Z ′m,n. Specifically, a point x is assigned mark 1 with probability

mf0(x)
/(
mf0(x) + nf1(x)

)
and mark 2 otherwise. Let X̃m and Ũn be the set of points of

Z ′m,n marked 1 and 2 respectively. Also denote Ãm,n the cross match statistic given from

optimal weighted matching over X̃m ∪ Ũn. Define the probability of two points in Z ′m,n

having different marks by gm,n(x,y):

gm,n(x,y) =
mf0(x)nf1(y) + nf1(x)mf0(y)

(mf0(x) + nf1(x))(mf0(y) + nf1(y))
. (4.13)
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We know that m/N → p0 and n/N → p1, hence gm,n(x,y)→ g(x,y) where

g(x,y) =
p0p1

(
f0(x)f1(y) + f1(x)f0(y)

)(
p0f0(x) + p1f1(x)

)(
p0f1(y) + p1f1(y)

) . (4.14)

So, the conditional expectation E
[
Ãm,n|Z ′m,n] becomes:

∑∑
1≤i<j≤Wm,n

gm,n(Zm,ni ,Zm,nj )1
{

(Zm,ni ,Zm,nj ) ∈M∗(Z ′m,n)
}
. (4.15)

By taking expectations in (4.15), one yields E
[
Ãm,n

]
.

Let Zm,n :=
{
Zm,n1 ,Zm,n2 , . . . ,Z

(m+n)
m,n

}
be the original non-Poissonized set of points. By

the fact that

E
[
|Mm +Nn − (m+ n)|

]
= o(m+ n),

the Poissonized limit of E
[
Ãm,n

]
. Set f(x) = p0f0(x) + p1f1(x), then fm,n(x) → f(x).

Using Lemma 4.4.1, we get

E
[
Ãm,n

]
(m+ n)

→ 1

2

∫
Rd
g(x,x)f(x) = p0 p1

∫
Rd

f0(x)f1(x)

p0f0(x) + p1f1(x)
. (4.16)

This completes the proof of Theorem 4.4.2. �

4.5 Experiments

We perform multiple experiments to demonstrate the utility of the proposed direct estima-

tor of HP-divergence in terms of dimension and sample size. We subsequently apply our

estimator to determine empirical bounds on the Bayes error rate for various datasets.

For the following simulations, the sample sizes for each class were equal (m = n).

Each simulation used a multivariate Normal distribution for each class.

We first analyze the estimator’s performance as the sample size N = m + n increases.

For each value of N , the simulation was run 50 times, and the results were averaged.
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Samples from each class were i.i.d. 2-dimensional Normal random variables, with µ0 =

[0, 0] and µ1 = [1, 1], Σ0 = Σ1 = I2.
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Figure 4.3: HP-divergence estimation vs. sample size n. Error bars denote the standard de-
viation over 50 trials. The proposed estimator and the FR estimator perform approximately
equivalently over this range of sample sizes.

We see that as N increases the performance of the FR estimator and our proposed

estimator (labeled OWM) are comparable for N up to 1000. The observed variance of

our estimators are slightly higher than the FR estimator. For dimension d = 2 this is not

surprising as we would expect the FR estimator to perform the best in this case.

Figure 4.4 (top) shows the averaged estimates of the HP-divergences over increasing

dimension. Here we see that the proposed cross-matching estimator shows improvement

with respect to the FR estimator, as expected. For each dimension evaluated in Figure 4.4,

N = 1000, and µ0 = [0]d and µ1 = [0.5]d, Σ0 = Σ1 = Id. The proposed cross-matching

estimator is slightly less biased as dimension increases, and as shown in Figure 4.4 (bottom)

we improve in empirical MSE.

Next we show the results of applying the HP-divergence estimator to 4 different real

data sets. Table 1 shows the cross match statistics and estimated upper bounds for Bayes
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Figure 4.4: HP-divergence (top) and empirical MSE (bottom) vs. dimension. The empirical
MSE of both estimators increases for larger dimensional data sets. The MSE is better for
the proposed (OWM) estimator.

Error (denoted by the column labeled ε).

Bayes Error Bounds
Data set A(XN) D̂c n m ε

Breast cancer [231] 33 0.791 488 241 0.093
Mines vs. Rocks [133] 7 0.864 97 111 0.067

Pima diabetes [133] 67 0.641 549 283 0.161
Hyper thyroid [133] 37 0.743 3012 151 0.023

Table 4.2: A(XN), D̂c, n, m and ε are the cross-match statistics, HP-divergence estimates
using A(XN), sample sizes and upper bounds for Bayes error respectively.
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4.6 Conclusion

We proposed a new dimension-independent direct estimator of HP-divergence using a

statistic derived from optimal weighted matching. The estimator is more accurate than the

FR approach and its variance is independent of the dimension of the support of the distribu-

tions. This translates to improved MSE performance as compared to other HP-divergence

estimation methods, especially for high dimension. We validated our proposed estimator

using simulations, and illustrated the approach for the meta-learning problem of estimating

Bayes classification error for four real-world data sets.
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CHAPTER 5

Dynamic Estimation of Influence Graphs with

Adaptive Directed Information

In this chapter, we introduce an adaptive version of directed information to estimate an

influence graph over nodes with time-varying features. Originally developed as a gener-

alization of the Shannon mutual information for quantifying the effect of feedback in a

simple communication channel, directed information (DI) measures the amount of causal,

time-varying influence that one node’s actions have on another node. By estimating these

quantities, we can infer a directed graph that captures the flow of influence between nodes.

We introduce an online time-averaged version of DI called adaptive directed information

(ADI) to study the difference in graphical structure over time. This method is applied to

two Twitter US political datasets to track changes in the graphical structure between can-

didates’ Twitter feeds.

Symbol Description
N1, N2, . . . , Nn Agents
X1, X2, . . . Xt Input time series
Y1, Y2, . . . Yt Output time series
XT [X1, X2, . . . , XT ]

H(·) Shannon entropy

Table 5.1: Glossary of commonly used symbols.
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5.1 Introduction

Estimating structure and interaction among targets of interest is a common problem inves-

tigated by the signal processing community. Here we are interested in estimating graphical

structure that captures directed interactions from observational data generated by multiple

agents. Often, it is possible to capture information on the joint behavior of these agents

over time. For instance, we may want to infer the interaction of equities in the stock market

over time from reported trading activity, or infer social interaction of moving objects in a

scene from video. We introduce an adaptive version of the information theoretic measure

directed information to quantify these interactions in an on-line recursive fashion.

Directed information (DI) was introduced in [148] to address the problem of feedback

in a simple channel. DI can be thought of as an extension of mutual information (MI), and it

has extensions to both infinite alphabet channels and continuous time [229]. Graphs created

from DI, often called influence graphs, have been explored in the literature previously

[11], [75], [193]. The authors of [11] considered influence graph estimation using the well

known Granger causality measure that is equivalent to DI under a Gaussian assumption.

The difficulty with DI is that its high computational and sample complexity do not allow

for easy and scalable estimation methods, especially when the data is high dimensional,

non-Gaussian and discrete. We describe a method that allows a time-varying DI graph to

be estimated under a Markov model.

Standard DI, while able to take into account time-varying properties of the agents over

time, is insensitive to abrupt changes in interaction, dependence, and influence, due to its

heavy weight on past observations. We introduce adaptive directed information (ADI) that

modifies DI so that it is more capable of picking up subtle shifts in the nodes’ interac-

tions. We show in this chapter that, under a Markov assumption, the ADI can be computed

efficiently in an online fashion using a recursive updating scheme over time. To our knowl-

edge, with the exception of our preliminary work [176] and the fuller treatment given in this

chapter, the recursive update form of the ADI has not appeared elsewhere in the literature.
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Under a simplifying instantaneous conditional independence assumption the ADI updates

depend only on the joint distributions of third order. To illustrate the ADI we apply it to

two Twitter datasets to estimate the influence graph among Twitter users.

This chapter is organized as follows: Section 5.2 discusses related work on influence

estimation, DI, and DI graphs. Section 5.3 will introduce the problem and some nota-

tion conventions. Section 5.4 will introduce the concept of DI and ADI. Section 5.5 will

demonstrate the chosen model for text information, and some assumptions made to make

ADI estimation tractable. Section 5.6 will explain the process of generating DI and ADI

graphs. Section 5.7 will introduce the two Twitter datasets, and discusses results from the

described methods. Finally, Section 5.8 summarizes the contributions of the chapter.

5.2 Related work

Influence among actors has been studied in many settings [16], [89], [216]. DI has been

studied extensively both theoretically and in the context of applications. The estimation

of the directed information rate for stationary ergodic processes has been studied in [114].

Some applications of DI are covered in [186], [187] regarding gambling and portfolio the-

ory. In addition, [195] uses DI to infer biological regulatory networks.

DI graphs have also been studied, most recently in [193], which focuses on the estima-

tion of the causal DI graph, as well as DI estimation. The authors of [193] identify sample

complexity for both non-parametric and parametric estimators for DI. The focus of [193]

is on cases where the processes are stationary. [11] also discusses DI graphs, with their

focus on the relationship to Granger causality. To our knowledge, no one has introduced an

adaptive version of DI.
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5.3 Setup and notation

Consider a set of n agents (N1, N2, . . . Nn), represented as nodes in a graph, that generate

P -dimensional features that evolve over T time samples. We assume that the features are

binary. We denote a random vector evolving over a time period t as a capital letter with a

subscript, e.g., Xt. A capital letter with a superscript T represents the random vectors up

to and including T , XT = X1, X2, . . . , XT . Finally, a lowercase letter with a superscript

and a subscript, xit, represents the scalar random feature i at time t.

5.4 Directed information

5.4.1 Definition and properties

Directed information is an information theoretic measure originally introduced by [148]

to study the effect of feedback on channel capacity. Given a discrete communications

channel P (Yt|Xt,Yt−1), with input time series X1, X2, . . . , Xt and outputs Y1, Y2, . . . , Yt,

the directed information (DI) is defined as:

DI(XT → YT ) =
T∑
t=1

I(Xt;Yt|Yt−1). (5.1)

The DI is asymmetric, DI(XT → YT ) 6= DI(YT → XT ). Furthermore, when the

channel exhibits no feedback, e.g.,

P (Xt|Xt−1, Y t−1) = P (Xt|Xt−1), (5.2)

DI is equivalent to the standard Shannon mutual information [56].
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5.4.2 Adaptive directed information

DI can account for the time-varying nature of interaction among targets (i.e. changing

P (Yt|Xt,Yt−1)), but does not vary over time and places equal weight on each time point

in the time series. We introduce the adaptive directed information (ADI) as a time vary-

ing modification of DI defined as a discrete time filter g(t, i) applied to the sequence

I(Xi;Yi|Yi−1), i = 1, . . . ,∞:

(ADINx→Ny)t =
t∑
i=1

g(t, i)I(Xi;Yi|Yi−1) (5.3)

The filter, g(t, i) can be chosen in various ways, including the windowed exponential

g(t, i) = e−(t−i)λct, i ≤ t, λ > 0, where ct = (1 − e−λ)/(1 − e−(t+1)λ), or the uniform

window of length T , g(t, i) = 1/T, |t− i| ≤ T .

5.5 Empirical estimation of DI and ADI

Empirical estimation of the DI and ADI from data poses challenges, especially in high

feature dimension P . The complexity of estimation can be reduced by imposing Markov

assumptions, performing dimension reduction on the feature space, and making simplifying

approximations to the joint distributions. Under a jointly Markov assumption on the pair of

time series {(Xi, Yi)}i we obtain a simplification of the following conditional probabilities:

P (Xt, Yt|Xt−1,Yt−1) = P (Xt, Yt|Xt−1, Yt−1), (5.4a)

P (Xt|Xt−1) = P (Xt|Xt−1), (5.4b)

P (Yt|Yt−1) = P (Yt|Yt−1). (5.4c)

One can simplify further by imposing the additional “instantaneous conditional inde-

90



pendence” property that Xt and Yt are independent given past information:

P (Xt, Yt|Xt−1, Yt−1) = P (Xt|Xt−1, Yt−1)P (Yt|Xt−1, Yt−1), (5.5)

which only involves “third order distributions”, i.e., distributions involving three ran-

dom variables. In order to exploit this factorization to estimate DI and ADI, we write DI in

terms of conditional Shannon entropies:

DI(XT → YT ) =
T∑
t=1

H(Yt|Yt−1)−H(Yt|Yt−1,Xt) (5.6)

Using (5.4), we obtain:

DI(XT →YT ) =
T∑
t=1

H(Yt|Yt−1)−H(Yt|Yt−1, Xt, Xt−1) (5.7)

= DI(XT−1 → YT−1) +H(YT |YT−1)−H(YT |YT−1, XT , XT−1). (5.8)

Using standard properties of conditional entropy and (5.8), the DI expands to

DI(XT → YT ) = DI(XT−1 → YT−1)−H(YT−1)−H(YT , YT−1, XT , XT−1)

+H(YT−1, XT , XT−1) +H(YT , YT−1)

(5.9)

= DI(XT−1 →YT−1) +H(YT , YT−1)−H(YT−1)−H(YT |XT−1, YT−1)

−H(XT |XT−1, YT−1)−H(XT−1, YT−1) +H(YT−1, XT , XT−1).

(5.10)

Hence, the DI can be computed from third order distributions in recursive form where only

third order entropy is required for updating the DI at time T − 1 to time T .

We can calculate ADI directly from DI, but if we choose to use an windowed exponen-
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tial filter g(t, i), we obtain the recursion:

(ADINx→Ny)t = α(ADINx→Ny)t−1 + (1− α)[H(YT , YT−1)

−H(YT−1)−H(YT |XT−1, YT−1)−H(XT |XT−1, YT−1)

−H(XT−1, YT−1) +H(YT−1, XT , XT−1)],

(5.11)

where α = (e−λ − e−(t+1)λ)/(1− e−(t+1)λ).

5.5.1 Estimating joint distributions of binary vectors

Under the instantaneous conditional independence assumption the third order distributions

of the form P (XT , YT , YT−1) must be estimated in order to calculate ADI. We implement

this estimator by binning together groups of time samples in order to estimate the distribu-

tions.

For concreteness we specialize to feature vectorsX = [x1, . . . , xP ] and Y = [y1, . . . , yP ]

with binary elements, i.e., xi, yi ∈ {0, 1}. While any feature dependency model could be

accommodated, for simplicity we will assume elementwise independence of the feature

vectors — namely, that the j-th scalar feature xtj is jointly independent of the other scalar

features xti and yti , for i 6= j, t = 1, . . . , T . This allows us to factorize the joint distribu-

tions of three feature vectors into third order distributions of scalar variables. Hence, for

example,

P (Xn, Xn−1, Yn−1) =
P∏
i=1

Pi(x
i
n, x

i
n−1, y

i
n−1) (5.12)

=
P∏
p=1

θ(1−t1)(1−t2)(1−t3)
p1

θ(1−t1)(1−t2)(t3)
p2

. . . θt1t2t3p8
. (5.13)

{θpi} are parameters that must be estimated. We propose using maximum likelihood esti-
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mators with Stein regularization [49]:

θ̂pi = (1− λS)θ̂ML
pi

+ λS, (5.14)

where θ̂ML
pi

is the maximum likelihood estimate of θML
pi

, and λS can be chosen to optimize

bias-variance tradeoff as in [49].

The factorization (17) allows the entropy to be computed from individual feature en-

tries:

H(YT−1, XT , XT−1) =
P∑
i=1

H(yiT−1, x
i
T , x

i
T−1). (5.15)

We will apply the proposed ADI estimator to text data, specifically corresponding to

the content of tweets from Twitter. From this data, we bin the tweets, forming documents

of collected tweets over time, and model each word as a binary random variable indicating

its presence or absence. These vectors are then used to estimate the {θpi} parameters.

5.5.2 Computational and model complexity

Each probability estimate for a third order distribution takes O(t) computations, where t is

the number of samples used to calculate the estimate. There areO(P ) entropies to calculate

for each estimate of directed information, and each entropy can be calculated in O(1). We

must calculate the DI T/t times for each pair, and there are n(n− 1)/2 = O(n2) pairs. In

total, calculation of every pairwise DI in the graph requires O(TPn2) computations. ADI

has an identical complexity analysis. For each DI calculation, we estimate 16P parameters,

and these parameters can be used for both orderings of the pair. Therefore, our method must

estimate (16PTn(n − 1))/(2t) parameters. This compares favorably with other methods

that attempt to estimate higher order distributions; for general vectors of binary features

and pairwise DI, one must estimate O(2P ) parameters for each pair.
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5.6 Creating influence networks

Once pairwise DI and ADI have been calculated for all n nodes, we are able to infer graph-

ical structure. The most naı̈ve way to do this is to simply use each non-zero DI entry as a

directed weighted edge between targets; this approach can be quite noisy. A more reason-

able approach is to create a hypothesis test for each edge, and only keep the edges that have

a statistically significant influence.

For DI, there are two possible ways to do this. One method, the approach of [195], uses

a functional transformation leading to approximation of p-values for existence of an edge.

Another method, proposed in [49], invokes a central limit theorem for DI. In this chapter,

the latter approach is used.

5.7 Application to Twitter datasets

The methods described above are applied to two datasets. The first, which is a dataset

regarding the United States Presidential primary candidates, are all the tweets from the

campaign Twitter accounts of each candidate from Oct. 1st, 2015 to Jan. 13th, 2016. The

second dataset is of the members of the United States Senate, over the same time period.

5.7.1 2015 US presidential candidates dataset

This dataset consists of 15 primary candidates. In total, there are 8918 tweets in the dataset.

After cleaning, stemming, and binning the tweets into 12-hour time periods, the features

(words) are further filtered as follows: if the word is used in less than 10 of the bins or

greater than 50% of them, it is discarded. In total, 1554 features remain.

Figure 5.1 shows the relative DI for the entire time period, after hypothesis testing at a

5% family-wise error rate probability, where the magnitude of relative DI is |DIXT→YT −

DIYT→XT |, and the direction of the arrow represents the sign (arrow points towards Ny if

DIXT→YT is larger). The width and shade of the directed edge is related to the magnitude
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Figure 5.1: Relative DI network of US Presidential primary candidates. The width of the
directed edge as well as the shade is related to the magnitude of the DI, and the size of each
node represents the volume of tweets.

of the relative DI. Further, the size of each node represents the volume of tweets. The

network in Figure 5.1 has some interesting properties. First, we see that nodes such as

Hillary Clinton and Rand Paul are sinks of influence, that is they have high indegree and

are influenced by many others. Conversely, there are nodes with high outdegree, such as

Jeb Bush and Bernie Sanders that are less influenced by others.

Figure 5.2: ADI for Bernie Sanders and Hillary Clinton. Above the graph are representative
tweets related to the circled spike.

Figure 5.2 demonstrates the utility of ADI. ADI was calculated using an windowed

exponential filter with λ = 0.7. Using ADI, we are able to see the time-varying nature
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of influence, this time specifically between Bernie Sanders and Hillary Clinton. We see

two large spikes in the ADI over time. The tweets above the graph partially contribute to

the circled spike. Specifically, we see that Bernie Sanders discusses incarceration and the

upcoming Democratic debate before Hillary Clinton does, which results in a spike of ADI

from Bernie Sanders to Hillary Clinton.

5.7.2 2015 US Senate dataset

This dataset is of the members of the United States Senate, from October 1st, 2015 to

January 13th, 2016. In total, the dataset consists of 96090 tweets. Figure 5.3 displays

updated versions of ADI graphs at consecutive timesteps. Some senators are not displayed

as they have no significant edges. We notice that there are nodes of high activity such as

RB (Rob Bishop) and MK (Marcy Kaptur). Further, we see significant evolution in the

network, with nodes adapting their behavior; this shows the method’s ability to estimate

changes in influence.
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TC
KA
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Figure 5.3: The width of the directed edge as well as the shade is related to the magnitude of
the DI, and the size of each node represents the volume of tweets. We see a large connected
component exhibiting mutual interaction, and significant evolution in the network, with
nodes adapting their behavior.
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In Figure 5.4 we plot the total degrees over time of ADI for a subset of senators. To-

tal degree for a particular node is defined as the outdegree (sum of outgoing ADI) minus

the indegree (sum of incoming ADI). These senators were chosen to show examples of

nodes that have high average influence (large positive total degree), senators which receive

influence approximately equal to the amount they influence (small total degree), and sen-

ators that are recipients of influence on average (large negative total degree). We note that

in all cases ADI captures variation in degree over time. This is compared to total degree

computed using DI, which is not sensitive to these temporal effects.

Figure 5.4: These senators were chosen as representative of senators that are high influ-
encers (SenThomTillis, SenJackReed), average senators (SenatorCardin, MartinHeinrich),
and senators that are high receivers (TedCruz, CoryBooker). We note that there is large
variation over time of the total degree for each of these senators.
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5.8 Conclusion

We presented an adaptive version of directed information, called ADI. ADI better captures

time-varying interactions between agents in a network by representing the time evolution

of DI as the output of a discrete filter with instantaneous DI as input. We further presented

efficient, recursive methods to compute DI and ADI under Markovian and conditional in-

dependence assumptions. Finally, we illustrated these methods on two political Twitter

datasets from the 2015 US Presidential campaign.
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CHAPTER 6

Ensemble Estimation of ADI with an Application

to Tracking in Video

Directed information (DI) is a useful tool to explore time-directed interactions in multivari-

ate data. However, as originally formulated DI is not well suited to interactions that change

over time. In previous work, adaptive directed information was introduced to accommodate

non-stationarity, while still preserving the utility of DI to discover complex dependencies

between entities. There are many design decisions and parameters that are crucial to the

effectiveness of ADI. Here, we apply ideas from ensemble learning in order to alleviate

this issue, allowing for a more robust estimator for exploratory data analysis. We apply

these techniques to interaction estimation in a crowded scene, utilizing the Stanford drone

dataset as an example.

Symbol Description
X i
t Feature for agent i at time t

Xi
T [X i

1, X
i
2, . . . , X

i
T ]

I(·) Shannon mutual information

Table 6.1: Glossary of commonly used symbols.
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6.1 Introduction

The study of interactions among entities of interest encompasses a broad array of appli-

cations and is crucial to understanding complex processes. Often times, we are interested

in the directionality over time of these relationships. Examples include social influence

estimation [175], [182], [193], entity interaction in video [48], and biological recording

analysis, such as EEG [50], [192]. These interactions can also be used to summarize

highly complex data topology, allow analysts to obtain a qualitative snapshot of the tempo-

ral interactions of the data, and make better informed decisions based on these simplified

representations.

One tool that allows for the extraction of interactions is called directed information

(DI). Originally created to analyze an information-theoretic channel with feedback, DI has

been used in many contexts to estimate directed relationships between entities, including

genetic data and social data. One deficiency of directed information is its inflexibility with

respect to time-varying distributions [175], [176]. Adaptive directed information (ADI) was

developed as an extension of directed information to better track changes in relationships

over time.

In this chapter, we address some of the issues associated with using ADI. Specifically,

ADI requires a choice of filter and corresponding filter parameters, and the quality of the

resulting interaction estimate is not generally robust to these choices. In addition, simple

filters may have difficulty adapting to both abrupt changes in interaction, as well as slowly

time-varying systems. An estimate that is able to accomplish both smoothing over time, as

well as the ability to adapt to abrupt changes in interactivity quickly is desired.

In this chapter, a form of ensemble learning is used to improve interaction estimation

with ADI. Specifically, following [100], [206], we generate a filter that is a convex com-

bination of simpler filters with different parameter specifications and whose weights are

dependent on the data. In order to address the possibility of abrupt changes in the system,

a growing ensemble of estimators is used to account for these changes in interactivity.
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The proposed ADI estimator is applied to interaction estimation in a crowded scene,

utilizing video from the Stanford drone dataset [198]. Utilizing a dynamic covariance

model, the ADI is estimated and used to uncover interesting phenomena in specific scenes

across the Stanford campus.

The chapter is organized as follows: Section 6.2 discusses related work. Section 6.3 in-

troduces the mathematical concepts of DI and ADI, and introduces our ensemble estimator.

Section 6.4 introduces the dynamic covariance model used to estimate ADI. Section 6.5

discusses the results on the Stanford Video Dataset. Finally, Section 6.6 concludes the

chapter.

6.2 Related work

Directed information has been studied in the context of theory and applications. Estimators

for DI have been proposed for the case of a finite or countably infinite feature space [115],

[140], [192]. Most, if not all, estimators use the stationary Markov assumption, including

plugin estimators [175], [176]. Directed information has been used in many contexts, in-

cluding EEG analysis [50], neural spike trains [192], and social influence analysis [175],

[176]. Changepoint detection methods [12] is one approach to track time-varying data,

and parametric as well as non-parametric methods exist. However, with few exceptions,

e.g., [17] these methods are mostly univariate and often require a parametric model or use

simple moment-based statistics that do not capture dependency.

Other methods of influence estimation have been studied, particularly in the context of

i.i.d. observations; examples include glasso [82] and hub discovery-type methods [103]. In

addition, semi-parametric extensions of these models have been created for non-Gaussian

data [138]. The family of directed information measures and in particular ADI is con-

cerned with directionality in time and with more complicated time-varying signals. In this

chapter, we assume a parametric multivariate Gaussian model, which is appropriate for the
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particular dataset.

The ensemble method used stems from the prediction with multiple experts, a popular

problem in machine learning [43], [100], [206]. Here, we use these techniques for smooth-

ing.

6.3 ADI and ensemble estimation

6.3.1 Definition of DI and ADI

We begin with some notation. We assume that we have 1, 2, . . . , N entities each with

features Xi
1:T = [X i

1, X
i
2, . . . , X

i
T ]. In this chapter,X i

t ∈ Rd. Directed information between

X i and Xj is defined as follows:

DI(Xi
1:T → Xj

1:T ) =
T∑
t=1

I(Xi
1:t; X

j
t |X

j
1:t−1), (6.1)

where I(X;Y |Z) is the Shannon conditional mutual information. Many interesting conser-

vation properties have been derived for directed information, including a close connection

to the standard Shannon mutual information; these will not be repeated here, but the reader

is referred to papers [11], [148], [149]. When considering the asymptotic behavior of DI

for stationary processes, one defines the directed information rate:

DI(Xi → Xj) = lim
T→∞

1

T
DI(Xi

1:T → Xj
1:T ).

If we assume that the entities form a k-Markov process, then

I(Xi
1:t;X

j
t |X

j
1:t−1) = I(Xi

1:t;X
j
t |X

j
t−k:t−1).

When stationarity cannot be assumed, then the traditional definition of DI is inapplica-

ble. However, the instantaneous DI summand of (6.1) retains valuable information about
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temporal interactivity of the entities i and j. In [175], we proposed to adaptively estimate

this quantity using adaptive directed information (ADI), which is defined as follows:

ADI(Xi
1:T → Xj

1:T ) =
T∑
t=1

g(t, T )I(Xi
1:t;X

j
t |X

j
1:t−1),

where g(t, T ) is a user-defined taper function. In past work [175], the focus has been on

the exponential filter g(t, T ) = α(1− α)t−T , so that ADI obeys the recursive update:

ADIi→j1:t = αI(Xi; Xj
t |X

j
1:t−1) + (1− α)ADIi→j1:t−1,

where ADIi→j1:t = ADI(Xi
1:t → Xj

1:t). However, the parameter α of the exponential filter

must be tuned according to the specific application. The goal of the this chapter is to

improve the robustness of ADI when the underlying state is unknown and rapidly changing.

In order to accomplish this, an ensemble filter is defined:

g∗(t, T ) =

∑nt
i=1 wi,tgi(t, T ; t0)∑nt

i=1wi
, (6.2)

where gi(t, T ) are “base filters” with different parameter specifications. Implicitly, the

weights wi are allowed to depend on past data. Further, the number of base filters included

in the ensemble (nt) is allowed to grow with t, and filter functions will be causal, i.e.,

g(t, T ; t0) = 0 for t < t0.

6.3.2 Expanding fixed shares of estimation

We apply an ensemble method based on the simple fixed shares algorithm [100], which

was originally introduced in [206].

A set of base filter functions is defined, G = {g1, . . . , gk} along with a parameter τ

which defines the rate at which new filters are introduced into 6.2

At each time t, an estimate Î(Xi
1:t; X

j
t |X

j
1:t−1) is obtained and used to both update the
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weights wi and to update the ADI estimate.

The weights wi are updated in a similar manner to [206]:

vi,t = wi,t−1e
−γ(yi,t−it)2 , wi,t = (1− β)vi,t +

β

nt

nt∑
i=1

vi,t,

where β ∈ [0, 1] and γ > 0 are user-defined hyperparameters. Theorem 6.3.1 provides a

bound for the MSE, assuming that I(Xi
1:t; X

j
t |X

j
1:t−1) is piecewise constant, and the esti-

mate has i.i.d. noise with bounded variance. We use the abbreviation it = I(Xi
1:t; X

j
t |X

j
1:t−1),

and similarly ît = Î(Xi
1:t; X

j
t |X

j
1:t−1) for convenience.

Theorem 6.3.1. Let ît = it + εt, where εt is independent with mean 0 and variance σ2
t , and

it is piecewise constant with m transitions. Then the MSE of the ADI ensemble estimator

is bounded by:

E

[
T∑
t=1

(ADI(t)− it)2

]
≤ m

γ
lnnt −

1

γ
ln βm(1− β)T−m +

γ

8
T +mσ2

∗ ln

(
T

e

)
, (6.3)

where σ2
∗ = maxt σ

2
t .

The proof of Theorem 6.3.1 is given in Appendix C.1.

6.4 Spatial interaction estimation in a scene

We illustrate ADI by applying it to discover salient time-varying interactions among actors

in a scene. Here, the components n = 1, . . . , N are actors moving around in space. For

each sampled frame t and actor i, define the position vector X i
t = [xit, y

i
t] on the plane.
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6.4.1 Dynamic covariance model

We propose a dynamic Gaussian model, following the model in [51]. Assume that the

combined feature matrix is distributed as:

X ∼ N (mt,Σt), (6.4)

where mt is a mean vector and Σt is a covariance matrix. We assume that mt and Σt are

slowly varying, and further use a kernel estimate of these quantities:

m̂t =
1∑T

i=1Kh(i− t)

T∑
i=1

Kh(i− t)Xi. (6.5)

Σ̂t =
1∑T

i=1Kh(i− t)

T∑
i=1

Kh(i− t)(Xi − m̂i)(Xi − m̂i)
T , (6.6)

where Kh(t) is a kernel function. The conditional mutual information is a function of the

covariance matrices under a Markovian Gaussian random process.

Î(Xi
1:t;X

j
t |X

j
t−1, X

[N ]/{i,j}
t−1 ) =

1

2
log

∣∣∣Σ̂
Xj
t |X

j
t−1,X

[N ]/{i,j}
t−1

∣∣∣∣∣∣Σ̂
Xj
t |X

j
t−1,X

i
t−1,X

[N ]/{i,j}
t−1

∣∣∣ .

6.5 Application to Stanford drone dataset

In this section, the proposed ensemble ADI estimator is applied to the Stanford Drone

Dataset [198], which is a collection of 60 annotated videos across 8 scenes shot on the

Stanford campus. These annotations allow for tracking the movement of pedestrians, cars,

bicyclists and other moving actors in the scene. These estimated locations of actors are

smoothed by a moving mean estimator in order to reduce artifacts introduced by the dis-

cretization of the annotations. These smoothed locations for each actor in the scene are

then used to calculate the ADI.

For the analysis, an rbf kernel was used in (6.5) with parameter h = 5, and the ADI en-
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semble parameters were set to τ = 10, β = 0.01, γ = 1, andG = {exp(0.1), exp(0.2), unif}.

After calculating ADI, only interactions where the actors were within a certain distance (in

pixels) from each other were considered - in this case, 100.

6.5.1 Interaction example between pedestrians

1150 1200 1250 1300 1350
frame

0.0

0.5

1.0

1.5

2.0

AD
I

ADI plot for 5, 25
adi - 25 to 5
adi - 5 to 25
ami

Figure 6.1: Stanford video dataset example. Here, we capture an interaction of two people
meeting in the scene. The shown video frames and corresponding ADI are demonstrating
them coming towards each other, interacting briefly, as actor 25 even walks in the other
direction to continue the conversation, and then resuming their original path. The title on
the plots pair of labeled actors in “video0” of the bookstore scene, and the line labeled i to
j represents ADIi→j .

Figure 6.1 shows one example of ADI and the corresponding interaction between two

pedestrians. The pedestrians labeled 5 and 25 stop to chat briefly, with 25 actually reversing

course for a small time to continue the conversation at frame 1280 to 1300 to continue

the conversation. The estimated ADI is able to identify this interaction, and to identify

that there is more influence from 5 to 25 than vice versa over this small window. This is

compared with an adaptive version of mutual information:

AMI(Xi
1:T ,X

j
1:T ) =

T∑
t=1

g∗(t, T )̂I(X i
t ;X

j
t |Xi

1:t−1,X
j
1:t−1),

where the ensemble method outlined for ADI is applied to the estimated summand
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Î(X i
t ;X

j
t |Xi

1:t−1,X
j
1:t−1).

6.5.2 Visualization of interactions based on ADI

We can use ADI as a tool to cluster and visualize many interactions in the dataset. First,

the ADI for all interactions between actors in the bookstore scene from the Stanford Drone

dataset across 5 different videos are collected, totaling m = 539 interactions. Using sym-

metrized ADI, ADIi,j = ADIi→j + ADIj→i, the maximal cross correlation between each

interaction is found, and this correlation is used as an affinity measure ak,l, with the corre-

sponding affinity matrix A = [ak,l]k,l=1,...m. Note that ak,l = al,k, and so A is symmetric.

A can then be used to apply a number of visualization and clustering techniques. Here,

we use t-SNE dimension reduction and visualization method [144], by transforming A to

a distance matrix D = [di,j]i,j=1,...m, where di,j =
√

2(1− ai,j) and applying the method

to this matrix. Figure 6.2 shows the results. The colors correspond to different types of

interactions, such as between pedestrians, or between a pedestrian and a bike, etc.

Figure 6.2: t-SNE plot of interactions based on ADI. The highlighted cluster of pedes-
trian interactions is characterized by low levels of interaction over a long period of time
combined with spikes of activity.

107



The visualization shows small clusterings of interactions. An example is circled in

black, with representative traces shown in Figure 6.3. More generally, we see that the

pedestrian-biker interactions mostly cluster in the bottom-left portion of the plot, while the

biker-biker and pedestrian-pedestrian interactions are less cohesive as a group, implying

heterogeneity among these types of interactions. The small highlighted cluster of pedes-

trian interactions, for example, are characterized by long periods of low ADI combined

with abrupt spikes. These are observed to correlate to pedestrians walking slowly in the

same direction or standing still along with occasional changes in velocity or direction.
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Figure 6.3: Representative ADI traces from highlighted cluster. The majority of these inter-
actions are pedestrians that are moving slowly together or standing still in close proximity,
with abrupt direction and velocity changes. The titles on the plots represent the origin video
and pair of labeled actors in the dataset, and the line labeled i to j represents ADIi→j .

6.5.3 Relationship between ADI and velocity

In this section we study the relationship between the velocity profile and ADI profile of

particular types of interactions. For each interaction and each actor i the instantaneous

velocity vector vit = [vit,x, v
i
t,y] is calculated, along with the corresponding instantaneous
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magnitude vit = ‖vit‖. Further, the instantaneous velocity angle between two actors i and j

is calculated:

θi,jt = arccos

(
vit · v

j
t

vitv
j
t

)
.

Using the relative velocity angle, we can look for two specific types of interactions, and

how their ADI profiles differ; those with high angle, so that the two actors are approaching

from opposite directions, and low angle, where the two actors are moving in the same

direction. Figure 6.4 shows four representative interactions, two with low velocity angles

and two with high velocity angles.
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Figure 6.4: Representative profiles of low and high velocity angle interactions. The top
row shows two low-angle interactions, one with high total velocity. The high total velocity
interaction has a relatively constant symmetrized ADI profile, while the low total velocity
interaction has an ADI profile close to 0. The high angle interactions have more variable
ADI profiles relative to their magnitude, and tend to be sensitive to changes in total velocity.

In general, interactions with high total velocity, defined as vit + vjt , and low velocity

angle see a stable and non-zero symmetrized ADI. In the low total velocity setting, the

ADI is normally much smaller than its high velocity counterpart. Two examples of low-

angle interactions are shown in the top row of Figure 6.4. In the high angle case, ADI is
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less constant, and in many cases responds more to changes in total velocity, as shown in

the bottom row of Figure 6.4.

6.5.4 Average ADI between different types of actors

Figure 6.5 shows a graph of the average ADI between types of actors in the bookstore scene

from the Stanford drone dataset across 5 different videos.
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Figure 6.5: Average ADI between types of actors in the bookstore scene for the Stanford
drone dataset. Bikers have the largest levels of interaction, while skaters have the least.

Skaters tend to have the lowest average ADI with other groups, followed by pedestri-

ans, with bikers and carts having the largest interaction magnitudes. Interestingly, pedestri-

ans influence bikers and carts more than the two groups influence pedestrians on average,

possibly signifying that bikers and carts are more cautious and thus are more affected by

pedestrians in the vicinity. As seen in Figure 6.4, the velocity magnitudes in interactions

can play a role, specifically that the magnitudes of velocity and ADI are positively corre-

lated. With bikers being among the fastest moving actors in this graph, it makes sense that

they have some of the largest interaction magnitudes.
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6.6 Conclusion

In this chapter, we introduced an ADI estimator that utilizes an ensemble technique in order

to make ADI more robust to user-specified parameters. The estimator is applicable to real-

world scenarios where directed information evolves as a function of time. We illustrated

the power of the ensemble ADI estimator to detect latent interactions in a video using

the Stanford drone dataset. In the future, ADI can be used as a data summarization and

exploration tool or as a component in a larger system.
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CHAPTER 7

Multi-layer Networks

Many real-world complex systems can be described by multi-layer networks, where a set

of elementary units (e.g, human, gene, sensor, or other types of ‘nodes’) are connected by

intra-layer and inter-layer relationships (‘edges’). Social network data are one of the best

known examples of multi-layer networks, where social entities are linked due to a social tie,

and each layer represents a different type of relationship. Networks changing over time (dy-

namic networks) can also be placed in a multi-layer framework. In this chapter, we begin

by introducing various types and formulations of multi-layer networks; centrality measures

for multi-layer networks are discussed, including how they differ from single-layer coun-

terparts. We also review community detection methods for multi-layer networks. We then

discuss topology estimation of multi-layer networks, particularly in the more specific case

of dynamic networks, and discuss some recent techniques. Lastly, two empirical studies of

multi-layer networks are explored, based on social media and biological data, respectively.

We demonstrate some of the ideas in the chapter to explore and exploit the multi-layer

nature of these examples.

7.1 Introduction

In this chapter, we are interested in describing a framework that allows for heterogeneous

structured data. We often find heterogeneous structure in social media data - there may

exist more than one type of relationship between agents; these relationships may impose
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Symbol Description
G = (V , E) a graph with vertex set V and edge set E
M, GM , M a multi-layer networkM with supra-graph GM and tensor form M

AM , LM supra-adjacency matrix AM and supra-Laplacian matrix LM
A(α), L(α) adjacency matrix and Laplacian matrix for network at layer α
[L] an integer set {1, 2, . . . , L}
◦, ⊗ outer/tensor product, and Kronecker product
X(t),Y(t) features from time 1, . . . , t

Table 7.1: Glossary of commonly used symbols.

different topological characteristics. For instance, people may be connected by more than

one social platform. Alternatively, we may observe explicit links between agents but also

infer implicit affinities based on agent features.

Another example of this heterogeneous structure arises when relationships between

agents appear and disappear over time; agents begin talking to each other at one time, and

end at another time, possibly signifying a change in relation. Both of the above examples

can be explained by a multi-layer network framework.

A multi-layer network is a network where a set of elementary units are connected by

intra-layer and inter-layer relationships (‘edges’). This structure is a generalization of

single-layer networks, where there are only intra-layer relationships. These layers rep-

resent heterogeneity in the structure or labeling of the data; a layer might correspond to a

type of connection, or a discrete timestep. The inter-layer structure represents ties among

nodes in the different layers; this structure may be observed, assumed, or estimated de-

pending on the application. The inter-layer structure in a social network often corresponds

to the labels of each node, so that each node in a single layer is connected to its counterparts

in the other layers. If the layers represent timesteps, each entity might be connected to its

counterpart in layers before and after the present layer, which represents the localization of

that layer’s characteristics in time.

As the multi-layer structure is more complicated than its single-layer counterpart, meth-

ods for single-layer analysis must be modified to accommodate accordingly, and new meth-
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ods are developed specifically for the multi-layer case. This chapter will review some of the

approaches for modeling multi-layer networks, and some of the methods that are specific

to this structure.

The rest of this chapter will proceed as follows: Section 7.2.1 will discuss the math-

ematical formulation of multi-layer networks. Section 7.3 will cover some examples of

multi-layer node centralities. Section 7.4 will review some types of multi-layer community

detection methods. Section 7.5 will utilize some of the techniques discussed in the chapter

on two application datasets. Finally, Section 7.6 will provide some concluding remarks.

7.2 Mathematical formulation of multi-layer networks

In this section, we focus on the mathematical formulation of multi-layer networks. Dif-

ferent from single-layer networks, they allow multiple types of interactions between each

pair of nodes. In what follows, we introduce two network representations: supra-adjacency

representation and tensor representation, each of which generalizes the notation of a single-

layer network. We next show some real-life examples that involve the multi-layer network

structure.

7.2.1 Modeling and representation

A single-layer network (also called a monoplex network) can be represented by a graph

[54]. A graph is a tuple G = (V , E), where V is the set of nodes and E ⊆ V × V is

the set of edges that connects pairs of nodes. A multi-layer network generalizes the no-

tion of single-layer network by incorporating the inter-layer connections; see Figure 7.1A

for an illustrative example. More formally, a multi-layer network is a pair M = (T , C)

[227], where T = {Gα, α ∈ [L]} is a family of graphs Gα = (Vα, Eα) with Vα ⊆ V ,

[L] := {1, 2, . . . , L}, and C = {Eαβ ⊆ Vα × Vβ, α, β ∈ [L]} denotes the set of inter-layer

connections (α 6= β). Here α is the layer index, and by convention, Eαα = Eα. When
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L = 1, the multi-layer networkM simplifies to a single-layer network. In the rest of the

chapter, unless specified otherwise, we assume that each layer contains the same set of

nodes with |Vα| = |V| = N for α ∈ [L], where |V| denotes the cardinality of the node set

V .
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Figure 7.1: Example with 5 nodes and 3 layers labeled α, β and γ. (A) Multi-layer net-
work where solid line represents intra-layer connection, and dash line represents inter-layer
connection. (B) Supra-graph representation. (C) Aggregated network.

7.2.1.1 Supra-graph representation

Let VM ⊆ V × [L] denote a set of node-layer combinations corresponding to M, where

(v, α) ∈ VM signifies that the node v ∈ V is present in layer α ∈ [L]. Let EM ⊆ VM × VM

be the set of edges between node-layer tuples. The multi-layer networkM can then be de-

scribed by a graph GM = (VM , EM), known as a supra-graph, leading to a supra-adjacency

matrix AM and/or a supra-Laplacian matrix LM [120]. Figure 7.1B shows the supra-graph
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representation of the multi-layer network in Figure 7.1A. Based on such a representation,

many methods for single-layer networks, e.g., centrality-based network diagnostics and

community detection methods, can be extended to multi-layer networks [58], [212].

In contrast to the supra-graph, network aggregation provides the simplest representation

for a multi-layer network, where connections between nodes are aggregated in all layers to

a single layer. The resulting graph is given by Ga = (Va, Ea), where Va = ∪Lα=1Vα and

Ea = ∪Lα=1Eα. Often the aggregated network can be cast as a convex combination (e.g.,

linear combination) of graph adjacency matrices across all layers [22], [47]. Although

such an aggregation may cause loss of information about the inter-layer network structure

[120], it becomes useful when modeling across networks that have very similar inter-layer

connectivity. Figure 7.1C shows the aggregated representation of the multi-layer network

in Figure 7.1A.

7.2.1.2 Tensor representation

A multi-layer network can be represented in a tensor form [67], [124], [227]. Let M ∈

RN×L×N×L denote the fourth-order adjacency tensor of the L-layer network M. Each

element of M is defined by

Miαjβ =

 wiαjβ if (v
(α)
i , v

(β)
j ) ∈ Eαβ

0 otherwise,
(7.1)

for i, j ∈ [N ] and α, β ∈ [L], where v(α)
i ∈ Vα denotes node i at layer α, and wiαjβ is

the weight corresponding to the edge (v
(α)
i , v

(β)
j ). We refer readers to [124] for a detailed

background on tensors.

We can express the multi-layer adjacency tensor (7.1) as a linear combination of tensors
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in the canonical basis

M =
N∑
i=1

L∑
α=1

N∑
j=1

L∑
β=1

wiαjβ(ei ◦ eα ◦ ej ◦ eβ), (7.2)

where ◦ represents the vector outer product (tensor product)1, ei is a basis vector in RN

with 1 at the ith coordinate and 0s elsewhere, and eα is a basis vector in RL. The tensor

representation (7.2) can be viewed as a generalization of the graph adjacency matrix A ∈

RN×N for the single-layer network G = (V , E),

A =
N∑
i=1

N∑
j=1

wijeie
T
j =

N∑
i=1

N∑
j=1

wij(ei ◦ ej), (7.3)

where wij is the weight associated with edge (vi, vj) ∈ E .

In addition to the fourth-order tensor representation (7.2), a multi-layer network is also

modelled by a third-order tensor in [84], where each slice corresponds to the network at

one layer, e.g., a dynamic network at one snapshot. In contrast with the third-order tensor,

the forth-order tensor encodes detailed information on the inter-layer connection between

any two nodes at different layers, namely, (7.1). Also, the fourth-order tensor M can be

flattened out to the supra-adjacency matrix AM of dimension NL × NL. Therefore, the

fourth-order tensor is a natural representation of multi-layer networks, and many techniques

on tensor algebra [67] can be used for network analysis.

7.2.2 Examples of multi-layer networks

We next introduce three important classes of multi-layer networks: node-colored networks,

edge-colored networks, and temporal networks [120].

Node-colored networks are graphs in which each node is labelled by one color. Consid-

ering each color as designating a layer, node-colored graphs can be represented as multi-

1If X = a1◦a2◦. . .◦an, then each element of the tensor X is given by Xi1i2...in = [a1]i1 [a2]i2 · · · [an]in ,
where [x]i denotes the ith entry of x.
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layer networks. They are often used to model heterogeneous networks that contain nodes

of different types.

Example 1 Bibliographic information networks contain information about researchers

(authors) and publications they produce (documents). Links exist between papers and/or

authors by the authorship, colleagueship, published venues, or topics [214].

Example 2 Internet of things (IoT) denotes the inter-networking of smart phones,

computers, vehicles, buildings, and other devices embedded with electronics, sensors and

actuators [91]. IoT allows autonomous exchange of useful information between ‘heteroge-

neous nodes’.

Edge-colored networks are graphs with multiple types of edges, where similar to node-

colored networks, color distinguishes between layers. Edge-colored graphs can be repre-

sented by multi-layer networks, where nodes in each layer are fixed and linked by edges

with a unique color. They can be used to model multirelational networks where nodes have

relations of different types [37].

Example 3 Public social networks link social entities by several types of relationships,

including friendship, vicinity, kinship, and membership in the same cultural society [239].

Example 4 Urban transportation networks describe the urban ecosystem, where nodes

represent spatial locations (e.g., restaurants, shopping malls, schools, parks and other places

of interest), and edges represent vehicles of different types, e.g., taxis, buses, and subways,

that are used to travel between two locations [9].

A temporal network is given by an ordered sequence of graphs. It can be interpreted as

a special case of an edge-colored multigraph, where the set of time instants provides the set

of edge colors, and the inter-layer edges are between nodes and their counterparts across

all time steps. The chromatin contact map over a time course of cell growth/development

is an example of a temporal network in biology [139].
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7.3 Diagnostics for multi-layer networks: centrality anal-

ysis

The study of centrality, i.e., evaluating the degree of nodal importance to the network struc-

ture, is often used to identify and rank essential nodes in complex networks. A number of

centrality measures are commonly used, such as degree, eigenvector, clustering coefficient,

closeness, betweenness, hubness and authority, differing in what type of influence is to be

emphasized [165]. For example, degree centrality measures the total number of connec-

tions a node has, while eigenvector centrality measures the importance of a node by the

importance of its neighbors [28]. Most centrality methods are only directly applicable to

single-layer networks. Here we generalize some important single-layer centrality methods

to multi-layer networks.

7.3.1 Overlapping degree and multiplex participation coefficient

Nodal degree is the simplest feature in network diagnostics. There exist several ways to

define multi-layered degree centrality. The simplest way is to use network aggregation,

where two nodes are considered to be adjacent if and only if the number of edges that

connect them in a multi-layer network is larger than a threshold [34], [35]. However, this

measure does not fully consider the inter-layer effect.

In a multi-layer network, it is essential to study how the nodal degree is distributed

across different layers. We recall from Section 7.2.1 thatM denotes a multi-layer network

with N nodes and L layers, the degree of node i on layer α becomes

k
(α)
i =

N∑
j=1

A
(α)
ij , (7.4)

where A(α)
ij is the (i, j)th entry of the adjacency matrix associated with graph Gα on layer
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α. The degree of node i in a multi-layer network is a vector quantity

ki = [k
(1)
i , k

(2)
i , . . . , k

(L)
i ], i ∈ [N ]. (7.5)

The overlapping degree of node i across all layers is defined as [22]

oi =
L∑
α=1

k
(α)
i = 1Tki, i ∈ [N ], (7.6)

where 1 is the L×1 vector of all ones. The overlapping degree (7.6) can be used to identify

hubs, nodes with high degree in the network. However, a node that is a hub in one layer

may only have a few connections in another layer. Thus a more suitable multi-layer hub

definition is the multiplex participation coefficient [22], [93],

Pi =
L

L− 1

1−
L∑
α=1

(
k

(α)
i

oi

)2
 . (7.7)

Here Pi takes values in [0, 1] and measures the degree to which the degree of node i is

uniformly distributed among the L layers. If Pi = 1, then node i has exactly the same

number of edges on each layer, namely, k(α)
i = oi/L. If Pi = 0, all the edges of node

i are concentrated in just one layer. The multiplex participation coefficient thus captures

heterogeneity of nodal degrees across layers in multi-layer networks.

7.3.2 Eigenvector centrality in supra-graph

Eigenvector centrality describes the impact of a node on the network’s global structure,

and is defined by the dominant eigenvector of the graph adjacency matrix. Eigenvector

centrality is widely used in many applications. For example, it is closely related to hubness

and authority centrality used in the hyperlink-induced topic search (HITS) algorithm [121].

Since computing the dominant eigenvalue and eigenvector can be computed in a distributed
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setting, eigenvector centrality is often preferable to other types of global centralities such

as betweenness [87], [218].

The simplest way to generalize the concept of eigenvector centrality for multi-layer

networks is to use network aggregation and apply single-layer based methods [211]. How-

ever, as shown in Figure 7.1, network aggregation oversimplifies the multi-layer network.

Therefore, we consider the supra-graph representation GM of a multi-layer network with L

layers and N nodes. The supra-adjacency matrix AM ∈ RNL×NL of GM can be separated

into two parts: the intra-layer component AL
M and the inter-layer component AI

M . That is,

AM = AL
M + AI

M , A
L
M = diag({A(α)}Lα=1) (7.8)

where diag({A(α)}Lα=1) denotes a block-diagonal matrix with diagonal elements A(α) for

α ∈ [L], and recall that A(α) is the graph adjacency matrix on layer α. The inter-layer

supra-adjacency matrix AI
M defines the inter-layer connectivity between every two layers.

If the inter-layer connectivity is identical for all nodes [212], then AI
M = AI ⊗ IN , where

AI ∈ RL×L is an inter-layer adjacency matrix whose elements represent the strength of the

connection between every pair of layers. For example, in a temporal network, if layers are

connected at consecutive time steps, then the inter-layer supra-adjacency matrix becomes

AI
M = AI ⊗ IN , A

I =



0 1 0 · · ·

1 0 1
. . .

0 1 0
. . .

... . . . . . . . . .


. (7.9)

Here AI models an undirected chain network, in which each node is adjacent to its nearest

neighbors. It is worth mentioning that the decomposition of the supra-adjacency matrix in

(7.8) facilitates exploring the spectral properties of multi-layer networks [212].

The eigenvector centrality vM ∈ RNL of the supra-adjacency matrix AM can then be
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defined as the solution to the following eigenvalue problem

AMvM = λmaxvM , (7.10)

where λmax denotes the largest positive eigenvalue of AM . The entries of vM give the

centralities of each node-layer pair. It is convenient to map the eigenvector centralities vM

to an N × L matrix

Viα = vN(α−1)+i, i ∈ [N ], α ∈ [L], (7.11)

where Viα corresponds to the joint centrality of the node-layer pair (i, α). Based on (7.11),

we introduce the marginal node centrality v̂i and the marginal layer centrality ṽα [218]

v̂i =
L∑
α=1

Viα, i ∈ [N ], ṽα =
N∑
i=1

Viα, α ∈ [L]. (7.12)

Similar to the supra-adjacency matrix in (7.8), we can define the decomposition of

the supra-Laplacian matrix, LM = LLM + LIM , where LLM = diag(AL
M1) − AL

M , and

LIM = diag(AI
M1) −AI

M . The decomposition of the supra-Laplacian matrix corresponds

to a diffusion process over nodes of the network. Specifically, the nodal dynamics follows

the differential equation [212]

ẋiα =
N∑
j=1

w
(α)
ij (xjα − xiα) +

L∑
β=1

uαβ(xiβ − xiα) (7.13)

for any i ∈ [N ] and α ∈ [L], where xiα denotes the state of node i at layer α, w(α)
ij is

the (i, j)th entry of the graph adjacency matrix A(α) at layer α, and uαβ is the inter-layer

coupling constant, namely, the (α, β)-th entry of the inter-layer adjacency matrix AI . The
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discretized matrix form of the diffusion equation (7.13) yields

ẋ = −(LLM + LIM)x = −LMx. (7.14)

Here the second smallest eigenvalue of LM (also known as algebraic connectivity [54])

governs the convergence properties of the diffusion process.

7.3.3 Nodal centrality via tensor decomposition

A fourth-order tensor was introduced in Section 7.2.1.2 to represent a multi-layer network.

Tensor decomposition is an effective tool for multiarray data analysis, and mono-layer cen-

trality measures can be extended in order to identify key nodes in multi-layer networks.

It has been shown in [227] that the principal singular vectors obtained from the CANDE-

COMP/PARAFAC tensor decomposition [124] can provide hub and authority scores of all

nodes in a multi-layer network.

The fourth-order adjacency tensor M ∈ RN×L×N×L of a multi-layer network can be

decomposed into a sum of rank-one tensors [124],

M =
R∑
i=1

σiai ◦ bi ◦ ci ◦ di, (7.15)

where {σi}Ri=1 are singular values of M sorted in a descending order, ai ∈ RN , bi ∈ RL,

ci ∈ RN , and di ∈ RL are singular vectors corresponding to the singular value σi, and R is

the rank of M. Considering the principal quadruplet {a1,b1, c1,d1} in (7.15), the entries

of a1 and c1 correspond to hub and authority scores of all nodes, while the entries of b1

and d1 give hub and authority scores of all layers. Note that if L = 1, then the four-order

adjacency tensor reduces to the second-order adjacency matrix, and the entries of a1 and c1

give the conventional hub and authority scores of nodes in a single-layer network. Given

the hub and authority scores [227], one can further generalize HITS of multi-layer networks
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[125].

Based on (7.15), the importance of a node-layer pair (i, α) can be evaluated as

Hi,α = |a1,ib2,α|+ |c1,id1,α|, (7.16)

where a1,i denotes the ith entry of the vector a1. The nodal importance measure defined

in (7.16) is called EDCPTD (Essential nodes Determining based on CP Tensor Decompo-

sition) centrality [227]. Given the joint centrality of the node-layer pair in (7.16), we can

then define the marginal node centrality and the marginal layer centrality following (7.12).

In addition to the hubness and authority centrality, other generalized centrality mea-

sures such as clustering coefficient, modularity, and random walk centrality can also be

defined using the tensor representation; see [67] for details. We illustrate the application

of centrality to identify genes that play significant roles in an allelically biased biological

process.

7.4 Clustering and community detection in multi-layer net-

works

Discovering meso-scale structures, such as communities, in complex networks is a wide

field of study [79]. These communities are generally described as a subset of nodes in the

graph that are more densely connected than other nodes in the network. This is sometimes

referred to in sociology as homophily [152]. Detecting these communities in a single-layer

network has and continues to be an active research field. Furthermore, research in commu-

nity detection for the more general multi-layer case has become increasingly prevalent in

the past decade.

Community detection in social networks facilitates the interpretation of the overall

structure of the network. Generally, we expect to see communities in social networks
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that strongly relate different agents to one another, such as common activities, interests,

or memberships to organizations. For instance, students that attend the same university,

play the same sport, or like the same music are more likely to be connected in a particular

link type. The concept of communities becomes more complex when multiple layers are

introduced (see Figure 7.2); communities that develop in one type of interaction may not

be present in another, or may be subsumed by a larger, more prevalent super-community.

It is also possible that the community structure in each layer exhibits different homophilic

clusters that do not correlate across layers. Depending on the application, the main goal of

analysis might be to utilize multiple layers to find communities that may have not been ob-

vious in a single-layer slice of the network. In other applications, we may be interested in

the similarities and dissimilarities of the community structure for each layer, which neces-

sitates different approaches. Community detection in temporal networks deserves its own

special treatment, as we often make temporal locality assumptions that allow for a more

focused analysis. References for community detection in dynamic networks include [20],

[24].

We will briefly cover three types of methods for multi-layer community detection:

score-based methods, model-based methods, and aggregation methods. This list is by no

means exhaustive, nor are the types of methods meant to be canonical. Rather, we find

them to be useful descriptors which tend to have reasonably well understood advantages

and disadvantages in the multi-layer setting. The main goal of aggregation methods is to

find shared community structure by combining each slice of the multi-layer graph into a

single-layer network. Score based methods rely on maximizing fitness functions based on

an appropriate null model in order to detect communities. Finally, model-based methods

rely on statistical models and formal inference to discover latent structure. These three

types of methods are not necessarily disjoint from one another; for instance, many in the

statistics community study models that are very similar to the null models that are used in

score-based methods.
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Figure 7.2: Examples of community detection with 20 nodes. (A) shows single-layer com-
munity detection, where the community structure captures homophily among the nodes.
(B) displays community detection in a multi-layer setting, where more complex situations
can occur. The middle layer has a sub-community in one of the larger communities dis-
played in the front layer, while the back layer has different latent structure altogether.

7.4.1 Score-based methods

In the single-layer setting, score based methods operate by optimizing a fitness function.

Perhaps the most popular method in this category is modularity maximization. Modularity

for a single-layer network is defined as follows:

Q =
1

2m

∑
i,j∈E

(
Aij −

kikj
2m

)
δ(ci, cj), (7.17)

where m is the number of edges in the network, A is the adjacency matrix, ki is the degree

of node i, and ci is the community label of node i. Modularity is qualitatively a comparison

with the structure of the network to a random null model in which every edge between

every node is equally likely [163]. Extensions of modularity, such as multi-resolution vari-

ants [232] have been proposed in the literature.

In order to find community structure, we perform a maximization of Q over the com-

126



munity assignments ci. Modularity maximization is typically performed using the Louvain

algorithm or its appropriate variants. Modifying these fitness functions for a multi-layer

setting can be done by appropriately defining a null model [162], which takes into account

intra-layer connections and inter-layer connections accordingly, in which case we have the

following multi-layer modularity:

1

2µ

∑
i,j∈EM ,α,β∈[L]

[(
A

(α)
ij − γα

k
(α)
i k

(α)
j

2mα

)
δ(α, β) + δ(i, j)Cjαβ

]
δ(ciα, cjβ). (7.18)

This model only takes into account inter-layer connections between the same nodes,

and their strengths are represented by Cjαβ . Further, each node in each layer has a different

community label ciα, and µ is an appropriate normalization term; see [162] for details.

Another score based method that allows for extensions to any single-layer fitness func-

tion involves Pareto optimality [181]. In this case, we assume that each node has one

community label for every layer, so that ci = ciα = ciβ . In this method, we define a fit-

ness function for each layer, f1(c), f2(c), . . . , fL(c), that we wish to jointly minimize. We

could, for instance, choose (negative) modularity on each layer for our cost function. Al-

ternatively, we could choose a similar cost function that arises when attempting to reduce

the inter-community connections - this is called spectral clustering [207]. Once we define

these functions, we attempt to solve the multi-objective optimization problem:

ĉ = arg min
c

[f1(c), f2(c), . . . , fL(c)]. (7.19)

The objective is to find the Pareto optimal solution or solutions. A non-Pareto optimal

solution c is a solution such that there exists at least one other solution d such that, for

all α ∈ [L], fα(d) ≤ fα(c), and fβ(d) < fβ(c) for at least one layer β ∈ [L]. The set

of Pareto points is the set of solutions for which the above is not true. The special case

of using the spectral clustering score function has been explored in [181]. Other methods
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for finding approximate Pareto optimal points include evolutionary algorithms, and Pareto

methods have been used in anomaly detection [109] and image retrieval [108].

7.4.2 Model-based methods

Model-based methods assume a specified statistical model for the network, and then use

statistical methods for inference in order to discover the latent community structure. These

models are often variants of a ubiquitous single-layer model called the stochastic block

model (SBM) [107]. This model assumes that given the community structure, each edge is

drawn independently as a Bernoulli random variable according to a parameter pij , where i

and j are the communities of the nodes for the edge that is being drawn. [213] generalizes

the SBM to have discrete types of layers and communities in each type. [64], [97], [185]

explore different extensions of the single-layer SBM. The inference for these models can be

quite difficult from both a computational and statistical persepective. Work to find provably

computationally and statistically efficient algorithms in various model cases continues to

be an active field of research in the multi-layer setting.

7.4.3 Aggregation-based methods

Aggregation based methods attempt to find a single-layer network that holds information

about the communities in the multi-layer network, and then utilize single-layer community

detection methods. Examples include [27], [66], [219]. A recent paper [47] utilizes spectral

clustering and convex layer aggregation to perform community detection. Specifically,

given a layer weight vector w ∈ WL, whereWL = {w : wα ≥ 0,
∑L

α=1wα = 1}, and a

supra-adjacency matrix as defined in 7.2.1.1, we define the weighted adjacency layer matrix

and associated Laplacian as:

Aw =
L∑
α=1

wαA
(α), Lw =

L∑
α=1

wαL
(α). (7.20)
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The authors in [47] discuss theoretical guarantees and limits of this method under dif-

ferent models, and also provide a framework for model selection.

7.5 Applications

In the following sections, we will demonstrate the utility of multi-layer network methods

on real data. First, we will examine a biological multi-layer network to uncover topological

roles in gene contact networks. We will also describe a Twitter dataset, and use the dynamic

interaction graph estimation technique discussed in Chapter 5.

7.5.1 Identifying genes encoding allelic differences in gene contact net-

works

Allelic differences between two homologous chromosomes (corresponding to paternal and

maternal alleles) can affect the propensity of inheritance in humans [132]. Therefore, it is

important to discriminate the contribution of the paternal (Pat) and maternal (Mat) genomes

to the functional diploid human nucleome. In what follows, we perform multi-layer net-

work analysis to understand allelic differences at the gene level.

Genome technologies like genome-wide chromosome conformation capture (Hi-C) can

be used to measure the genomic structure [33], [45], [134]. Here, Hi-C evaluates long-range

interactions between pairs of segments delimited by specific cutting sites using spatially

constrained ligation [134]. As a result, we obtain a fragment read table, each row of which

indicates a ligated pair of fragments from the genome, with the coordinates of both frag-

ments. Based on that, we can construct 2D Hi-C contact maps at gene resolution [46],

[139]. We refer the reader to [46] for more details on data generation and preprocessing.

From the network point of view, this leads to a sequence of inter-gene interaction networks

over time (namely, cell cycle phases G1, S and G2/M) under both Pat and Mat alleles.

That is, we obtain an allele-specific multi-layer network, where each cell cycle stage cor-
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responds to a layer. Our goal is to identify genes that yield significant contact differences

between the Pat and Mat alleles.

We adopt the overlapping degree centrality and the multiplex participation coefficient

to distinguish Pat allele from Mat allele. We recall from 7.3.1 that the overlapping degree

centrality allows us to identify hubs from a network, and the multiplex participation coeffi-

cient can quantify the participation of a gene to different cell cycle phases. In Figure 7.3B,

we present z-scores of genes’ overlapping degrees versus genes’ participation coefficients.

As we can see, due to allelic differences, there exist genes that play different topological

roles on Pat and Mat alleles. Let zi denote the z-score of the overlapping degree for gene i,

and Pi denote its multiplex participation coefficient. We distinguish hubs (interacting with

many genes) from regular nodes if zi ≥ 2. Motivated by [22], we call genes focused if

contacts associated with them were concentrated on a single cell cycle phase, correspond-

ing to P1 < 1/3, and multiplex if their connected edges were homogeneously distributed

across different cell cycle phases, corresponding to P1 > 2/3. In the considered experi-

ment, genes LEPREL1 and CTSS are hubs at Pat allele, while they become regular nodes

at Mat allele. And gene KBTBD2 is a multiplex node at Pat allele, but it becomes a focused

node at Mat allele. We show the allelic differences in terms of contact differences of genes,

e.g., LEPREL1 in Figure 7.3C.

7.5.2 Application to Twitter dataset

A Twitter dataset was extracted from a large subsampled collection of tweets spanning the

month of November 2015. This dataset extracted any tweet with at least one of twenty

seven hashtags. These hashtags fall into two categories: hashtags that pertain to upcoming

movies at the time (creedmovie, gooddinosaur, spotlightmovie, etc.), and 5 pertinent po-

litical hashtags (bernie2016, cruz2016, cruzcrew, hillary2016, trump2016). These tweets

were then aggregated on a 24-hour basis, and natural language features were extracted.

These features were then used to calculate the marginal DI and ADI between each pair of
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Figure 7.3: (A) Temporal network with implicit inter-layer connections between genes
at one cell cycle phase and their counterparts at other cell cycle phases. (B) Overlap-
ping degree versus multiplex participation coefficient: genes are divided into 4 clusters via
K-means. (C) Representative gene LEPREL1 with allelic differences in the topological
structure.

hashtags.

Figure 7.4 shows a graphical representation of the average DI over time between each
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node, with the two hashtag groups differentiated by color. Note that the political hashtags

exhibit a much stronger mutual influence than the movie hashtags did.
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Figure 7.4: Network of average (symmetrized) DI. The political hashtags (purple) have a
much stronger relationship with each other than the movie hashtags (orange), creating a
strong clique in the graph.

Figure 7.5 shows the result of the same centrality analysis performed in Section 7.3,

applied to the dynamic hashtag relevance network. From the plot, we can surmise that the

political hashtags have stronger relationships that are sustained over time when compared

to the movie hashtags.

Figure 7.6 shows the total degree (outdegree minus indegree) of ADI over time for the

political hashtags. Note the wide variety of dyadic behavior among the political hashtags,

with the trump2016 hashtag being the largest sink of influence.
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Figure 7.5: Overlapping degree versus multiplex participation coefficient for outdegree of
ADI. The political hashtags have larger Z-scores in both the participation coefficient and
overlapping degree. This suggests that they exert stronger relationships at each timestep
than the movie hashtags and sustain these relationships consistently over the time horizon.
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Figure 7.6: Total degree of ADI over time. Due to the use of ADI, we can see both the
overall trends of influence along with occasional spikes due to a particular series of tweets.
In this dataset, the hashtag trump2016 is a trending sink of relative influence coupled with
negative spikes of relative influence on occasion. This would suggest that trump2016 is
strongly correlated to the rest of network, and in particular that tweets with trump2016 are
closely related with other tweets from the previous day.
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7.6 Conclusions

Social network datasets are ubiquitous in today’s data landscape. We have discussed in

this chapter some methods for dealing with multi-layer social networks, and some of the

difference when analyzing a single-layer network. After defining some formulations and

representations of multi-layer networks and some common examples that one might en-

counter, we covered some measures of multi-layer network centrality. We also discussed

a few types of methods for multi-layer community detection, including briefly discussing

some benefits and drawbacks of each type. We finally covered the problem of multi-layer

interaction graph estimation, with special focus on dynamic graphs. We then applied a few

of the techniques to two datasets, a biological dataset, and finally a social network dataset.

As the field of multi-layer networks continue to grow, we expect that the methods that

we have summarized here will continue to evolve and improve, and that the framework of

multi-layer graphs will become even more useful to the field of social network analysis in

the years to come.
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CHAPTER 8

Multi-objective Community Detection for Large

Multi-layer Social Networks

Social networks often encode community structure using multiple distinct types of links

between nodes. In this chapter we introduce a novel method to extract information from

such multi-layer networks, where each type of link forms its own layer. Using the concept

of Pareto optimality, community detection in this multi-layer setting is formulated as a mul-

tiple criterion optimization problem. We propose an algorithm for finding an approximate

Pareto frontier containing a family of solutions. The power of this approach is demon-

strated on a Twitter dataset, where the nodes are hashtags and the layers correspond to (1)

behavioral edges connecting pairs of hashtags whose temporal profiles are similar and (2)

relational edges connecting pairs of hashtags that appear in the same tweets.

Symbol Description
G = (V , E) Multi-layer network
V Vertex set
E = (E1, . . . , EM) Tuple of edge sets for each layer
Ak Adjacency matrix for kth layer
Dk Degree matrix for kth layer
fi(·) Layer-specific cost function

Table 8.1: Glossary of commonly used symbols.
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8.1 Introduction

Social networks have become rich sources of data for network analysis, where objectives

might include community detection, edge prediction, node behavior prediction, and model

inference. However, it has become increasingly difficult to extract meaningful information

from these networks due to the explosion in both the volume of data collected and the

diversity of available data types. In this chapter we focus on addressing the latter problem

for the task of community detection; specifically, we consider networks containing multiple

layers of interactions between nodes.

For many social network applications, measures of association between pairs of nodes

may be available along multiple dimensions. For example, graph edges may be observed

directly in the data, or they may be inferred from actions of the agents in the network. We

make the distinction between relational links that are observed explicitly and behavioral

links that are inferred from ancillary data describing node behavior. Examples of relational

links between users might include observed interactions over a period of time, mutually

established friendship connections, or email sender-reciever relationships. Likewise, be-

havioral links might be drawn between users who post items with similar semantic content,

like the same bands or movies, or exhibit correlated activity over time. Further, it is pos-

sible to have multiple types of relational and behavioral links; for instance, there could be

both a professional and personal social network over the same set of users. Networks with

multiple distinct edge types have been called multi-layer [146], multi-level [210], multi-

relational, or multiplex [120] networks.

In a multi-layer network, each layer may have a unique topology. The simplest way to

apply existing network analysis algorithms (which generally assume homogeneous edges)

is to “flatten” the data, i.e., to combine all the different types of links into a single-layer

network. This can be accomplished in various ways, for instance, by performing a logical

AND or OR on the layer-specific adjacency matrices, or by computing their weighted (and

possibly thresholded) average. However, this approach has many hidden pitfalls; for exam-
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ple, if one of the layers is noisier than the others then it probably should not receive equal

consideration when attempting community detection.

A better strategy, we argue, is to directly analyze the multi-layer networks without flat-

tening. To show how this can be done, we propose a new method of community detection

for multi-layer networks. Our approach employs multi-objective optimization, taking into

account multiple layers of network structure, which is then used to find a community par-

tition. We show that this algorithm can provide significantly better community detection

than that obtained by standard single-layer techniques.

The chapter proceeds as follows. In Section 8.2 we define multi-layer networks. In

Section 8.4 a Pareto optimality approach to multi-layer community detection is proposed, in

Section 8.5 we apply the proposed approach to simulated data, and in Section 8.6 we apply

the proposed approach to three datasets. Finally, we discuss related work in Section 8.7

and give concluding remarks in Section 8.8.

8.2 Multi-layer networks

A multi-layer network G = (V , E) consists of vertices V = {v1, . . . , vp}, common to all

layers, and edges E = (E1, . . . , EM) in M layers, where Ek is the edge set for layer k, and

Ek = {ekvivj ; vi, vj ∈ V }. Each edge is undirected, though extensions to the directed case

are not difficult. The multi-layer degree of a node i is di ∈ RM , with each entry [di]k being

the degree of node i on layer k.

The adjacency matrix and degree matrix are defined as usual for each layer:

[[Ak]]ij = ekvivj (8.1)

Dk = diag([d1]k, [d
2]k, . . . , [d

p]k) (8.2)

Note that Dk is simply a p× p diagonal matrix with the layer-specific node degrees on the

diagonal.
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Figure 8.1: An example of a Pareto front for two objective functions. An important aspect
of this example is that the Pareto front is non convex; therefore, a weighted linearization
search strategy will not explore the entire front.

8.3 Multi-objective optimization

Multi-objective optimization is a general framework for solving optimization problems

when there is more than one objective function to be minimized. Often, these objective

functions can contradict each other, so that their individual minimizations lead to solutions

that are far away. Thus, the first step in this type of optimization problem is to define what

an optimal solution is; we do this with the concept of non-dominated solutions.

Formally, we define the following multi-objective optimization problem:

x̂ = argmin
x

[f1(x), f2(x), . . . , fn(x)] . (8.3)

We are interested in solutions that are called non-dominated solutions. A solution y∗ is

dominated by the solution x∗ if for all i between 1 and n, fi(x∗) ≤ fi(y
∗), and for at least

one j between 1 and n, fj(x∗) ≤ fj(y
∗). We call the set of feasible solutions that are not

dominated by any other solutions the first Pareto front. The Pareto front contains solutions

that are at least as good as all the other solutions, and in at least one objective function

they do better. In our MOO framework, we say that solutions in the first Pareto front are

optimal. A visualization of a Pareto front for n = 2 is shown in Figure 8.1.

There are a variety of approaches to obtaining solutions for (8.3). Perhaps the most
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basic is to linearize the problem and solve the corresponding scalar optimization

x̂ = argmin
x

n∑
i=1

αifi(x) (8.4)

for some set of weights {αi}. This approach is advantageous because it distills the problem

down to a single optimization problem for which there are many standard methods. There

are two main disadvantages, however. First, it is up to the user to choose the weights αi

in advance, or through trial and error, which can be difficult in practice. The second and

perhaps more pervasive problem is that this procedure will only recover the Pareto front if

the solution space and all objective functions are convex [86]. When convexity does not

hold, this procedure can only find a subset of the feasible Pareto solutions. Two approaches

that avoid this problem are ε methods and goal attainment, although both are very sensitive

to parameter settings. The most popular methods for finding an approximate Pareto front

are evolutionary algorithms. These algorithms use heuristic concepts from biology, along

with some parameters and randomly selected seed cases to attempt to find solutions on the

Pareto front by propagation. More details can be found in [40], [68] and references therein.

Another strategy is to avoid the heavy computational and analytical burden of comput-

ing an exact Pareto front. If it is possible to obtain a sample of solutions that are likely to

be on or near the front, we can sort these points for non-domination. In this way, we can

filter a large set of solutions to find the optimal ones that are worth further consideration.

In the next section we show how, given two solutions that are assumed to be approximately

Pareto optimal, a greedy, recursive algorithm can be used to find more approximately non-

dominated points.

8.4 Community detection via multiobjective optimization

Many existing community detection algorithms involve optimization [78]. Methods that

fall into this category include spectral algorithms, modularity methods, and methods that
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rely on statistical inference, particularly those that try to maximize a likelihood function. It

seems natural that a multi-layer generalization of such algorithms might somehow combine

the optimization objective functions as applied to each individual layer; this is the basis of

multi-objective optimization.

More formally, let community structure in a network be described by a node partition

C, where C(i) = k means that node i is in part k. Single-objective optimization methods

of community detection seek to find the partition argminCf(C) that minimizes an objec-

tive function f (which depends internally on the network structure). In the following we

consider the two community case; more communities can be found by a recursive use of

the algorithm.

Now consider a two-layer network, and let f1 and f2 be objective functions for the

two layers. One obvious way of combining the layers would be to minimize the linear

combination αf1(C)+(1−α)f2(C) overC, where α ∈ [0, 1]. However, linear combination

may be restrictive, especially when the objective functions are complex. A more general

approach is instead to seek the Pareto optimal solutions of the multi-objective minimization

problem:

Ĉ = argminC [f1(C), f2(C)] . (8.5)

In order to find approximate Pareto-optimal solutions, we utilise the Kernighan-Lin

node swapping technique [118]. The objective is to find solutions that are approximately

Pareto optimal. Figure 8.2 shows the proposed algorithm.

For community detection, the objective is to minimize the ratio-cut fk for each layer

k = 1, 2:

fk(C) =
1

2

2∑
k=1

cut(C)

|{i : C(i) = k}|
(8.6)

cut(C) =
∑

C(i)=1,C(j)=2

[Ak]ij (8.7)
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Input: f1, f2

Obtain optimum solutions C∗1 , C
∗
2 for each layer

Initialize C = C∗1
repeat

for i : C(i) 6= C∗2(i) do
Cnew ← C, Cnew(i)← C∗2(i)
cost(i)← f2(Cnew)− f2(C)

end for
i∗ ← argmini cost(i)
C(i∗)← C∗2(i∗)

until C = C∗2
Output: non-dominated solution values taken by C

Figure 8.2: Proposed algorithm for Pareto front identification.

A relaxed version of this objective function can be solved by performing an eigendecom-

position on the Laplacian Li = Di − Ai. More details can be found in [143].

8.5 Simulation

We tested the algorithm shown in Figure 8.2 on synthetic multi-level networks. For our

experiments, we used an unweighted network of 500 nodes, whose average degree was

50. The first layer was constructed using an Erdös-Rényi model with each node having an

average degree of 50. We then changed a variable percentage of the edges in that layer

to create the second layer, and ran the algorithm to construct an approximate Pareto front.

Figure 8.3 shows some example results for differing levels of variation between layers.

Changing the variation between layers changes the nature of the solution path that is

tested, as well as the resulting non-dominated set. Layers that were more similar actually

were able to do better than their initializations; the Pareto front in these cases does not

include the points that we assumed to be approximately optimal. As the layers become

dissimilar, we are not able to improve as much on the starting points; at 80% dissimilarity

almost every solution explored was part of the non-dominating set. This implies that with

almost every swap, the tradeoffs to be had could almost never do better in both cut-sizes.
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Figure 8.3: Pareto fronts for different levels of similarity. The greedy path between the
spectral solutions is shown in blue; those points that are weakly non-dominated, and thus
make up the approximate Pareto front, are shown in red.

Moreover, as the layer become more dissimilar, the overall cut-size increases.

8.6 Experiments

We apply this method to three datasets. The first two are Twitter datasets, while the final

dataset is the Enron email dataset.

8.6.1 Political Twitter dataset

The proposed algorithm was applied to a month of data from Twitter. A two-layer network

on hashtags was developed using tweets from October 2012. The data was obtained from

the Twitter stream API at gardenhose level access, which corresponds to 10% of all tweets

over the month. A list of hashtags and the users who tweeted them was created for each

day, as well as the volume (i.e., number of observed occurrences) of each hashtag per day.

Hashtags that were directly connected with the presidential election or politics were

chosen out of a list of the most popular hashtags for the month, which yielded 48 hashtags.

Figure 8.4 shows an example of two network layers for one day on the original set of 48

hashtags. In order to include some higher order connections, the list was expanded by

including hashtags whose volume per day behaved similarly over the month as the first 48;

this grew the network to 515 tags.
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(b) Hashtag User Layer

Figure 8.4: A network visualization of two layers of the hashtag dataset for October 10th,
2012. This example shows the differing topologies generated by different links in a net-
work. While we see some similarities—for instance, nodes 38, 39, and 32 have high degree
centralities in both networks—these networks have many differences, the most obvious be-
ing that the volume layer is not even fully connected, while the user layer is fully connected
and has a diameter of only 6.

Initially, the total volume of the hashtags was studied over time, and real events were

compared with the profile; this is shown in Figure 8.5. Some events are correlated with

volume; Hurricane Sandy falls on the two day period with the largest hashtag volume. The

second presidential debate also corresponds to a spike in hashtag volume. In contrast, the

first presidential debate is not an identifiable event in the volume plot.

A time series of two-layer networks was created with hashtags as the nodes. Specifi-

cally, 31 two-layer networks were created by aggregating daily Tweet data over each day

in the month. The first layer linked two hashtags if any user used both the hashtags in

that particular day. This layer is referred to as the hashtag user layer. The second layer

linked two hashtags if they had similar volume profiles over time. Intuitively, two hashtags

would have a link with each other if they were popular or unpopular at the same time. So

as not to take into account too much past data, the volume correlation was calculated using

a moving window of 5 days. A Pearson correlation coefficient was used to calculate the

correlations in volume for each pair of hashtags; the correlations then underwent a Fisher
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Figure 8.5: Volume of observed usage of the 515 political hashtags along with an event
timeline for October 2012. Notice that while we can see that some events correlate with
hashtag usage for our dataset, this is not true for all events that might be expected to affect
political hashtags.

transformation and were thresholded by a value of 1.3859 which corresponds to an approx-

imate 5% false positive rate (in the bivariate normal case) when testing for the presence of

a positive correlation [77]. This layer is referred to as the hashtag volume layer. Figure

8.6 demonstrates pictorially the creation of the two layers, using a simple dataset of three

hashtags.

We will show that one is able to obtain more information by the proposed Pareto multi-

layer analysis methods than when the two layers are analyzed separately. To this end, the

graph-cut partitions (8.7) were computed for each day. We also computed approximately

Pareto-optimal partitions by combining the single-layer solutions using the algorithm in

Figure 8.2, and selected a single partition by using the approximate midpoint of the Pareto
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Figure 8.6: The two layers of the Twitter hashtag network are illustrated. At the top is the
relational layer where a link between two hashtags indicates that at least one user used both
hashtags in the same Tweet. At the bottom is the behavioral layer where a link indicates
similarity in the hashtag usage volume over time.

front. The Adjusted Rand Index (ARI) [111] was then used to compare partitions on dif-

ferent days and see how hashtag relationships change over time. The ARI measures how

similar partitions are, and can vary between -1 and 1.

Figure 8.7 shows heat maps of all the ARI indexes, both for the single layers considered

separately as well as for the proposed algorithm. The hashtag user layer reflects fairly stable

correlation among the two clusters until day 16, where there is a phase transition. Note that

this phase transition also occurs on the volume layer heatmap. There is not much similarity

between days in the user network, implying that there is not an optimal stable two cluster

solution when considering the hashtag user layer alone, and it is difficult to extract real

events.

In the hashtag volume layer heatmap, some community structure over days are highly

correlated with each other. In particular, the days on which Hurricane Sandy occurs have

communities that are highly correlated. It is also interesting to note that the communities

at the end of the month are nothing like the bisected communities at the beginning, which

implies considerable temporal evolution in the network. There is also more sparsity in

the hashtag volume layer heatmap; consequently it may be possible to detect events more
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(c) Combined Network

Figure 8.7: The more highly resolved block structure in combined network heatmap clearly
indicates that the hashtag community structure remains quite stable and coherent over the
first 15 days of October but then breaks up into smaller clusters of coherency over the
remainder of the month. This may reflect the change of public opinions after the second
Presidential debates (October 16) and the effect of Hurricane Sandy (October 28) on Twitter
hashtag volume and usage.

easily using this network.

The evident block structure in the Pareto combined heatmap shows that the multi-layer

algorithm eliminates similarities between the first and second half of the months. The

Pareto combined solution holds attributes from both the hashtag volume layer and hashtag

user layer; the structural patterns that were present in the latter half of the month of the

hashtag volume network are also present in the combined solution. The first half of the

month also has some self-similarity, which is seen in the hashtag user layer. However, the

proposed multi-layer algorithm was able to pick out some days that were more highly cor-

related than in either of the single layer solutions. In particular, days 3-5 are more highly

correlated in the combined solution; October 3rd was the day of the first debate. Inter-

estingly, the layers jointly reveal correlations between days not visible in the independent

single layer analyses.

8.6.2 NFL Twitter dataset

Data to create multi-layer network was obtained from the Twitter stream API at garden-

hose level access during the month in January of 2013. Tweets were filtered based on the
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availability of geolocation data. This geolocation information allowed for the creation of a

first layer of the multi-layer network. For every pair of users i and j, they were connected

(Aij = Aji = 1) if the users were closer than a certain distance threshold δ. This δ param-

eter changed based on the density of users and size of area that was being observed. This

layer is called the coordinate network layer.

The second layer that is created utilizes hashtags to connect users. Hashtags are any

words beginning with a # sign. In this layer, a user i and j are said to be connected if they

use the same hashtag from a specified set of hashtags over the one month period. In order

to focus on a smaller set of users, specific hashtags were chosen that applied to an event or

set of events that were occurring in this period; in this case the events were the National

Football League (NFL) playoffs. The dataset was created by first filtering on four of the

most popular pertinent hashtags in the three month time period: #Ravens, #49ers, #Falcons,

and #Patriots. These correspond to the four NFL football teams that reached the end of the

NFL playoffs for that year. A two-layer network consisting of the hashtag network layer

and coordinate network layer (δ = 50) is analyzed. The resulting dataset contains 3456

nodes (Twitter users).

We first perform single-layer community detection. The partition resulting from spec-

tral clustering on the hashtag network does a good job at stratifying the popular hashtags

into communities, as seen in Table 8.2. Community 1 is mostly the #Ravens hashtag, while

community 4 is the #49ers. Community 2 sees the #Patriots and #Falcons hashtags grouped

together, while community 3 is a mixture of all four. Figure 8.8 shows a false color map of

the densities of people per community. It is surprising that while there is strong community

structure in this network, it is less correlated with geography than one might expect.

As expected, the coordinate network layer partitions according to high population den-

sity. Specifically, it clusters the San Francisco and LA area together, the Maryland area by

itself, and the Atlanta and Boston area together. The last community seems to be a catch-all

for everywhere else, i.e., those places with less density.
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(a) Hashtag Network Layer (b) Coordinate Network Layer

Figure 8.8: Density plot by community. For the hashtag network layer, the communities
correspond to the numbers in Table 8.2 going from left to right and subsequently from top
to bottom. Note that discussion of NFL teams are less localized than the fanbase would
suggest. The communities for the coordinate network layer are highly correlated with high
population density.

Community 1 Community 2 Community 3 Community 4

#Ravens 1232 0 170 0
#49ers 57 0 155 762

#Patriots 45 291 29 10
#Falcons 49 273 29 7

Table 8.2: Hashtags per community for hashtag network layer solution.
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Figure 8.9: Density plot for Pareto combined community. This community partition retains
attributes from both layers, while still giving a visual sense of the overall community struc-
ture. The communities in the upper left and lower right have become more concentrated
about east coast and west coast, respectively. Further, the community in the upper right
shows high concentration in Atlanta up to both the Maryland and Massachusetts area.

Using the described algorithm, a Pareto solution is found for the multi-layer network;

the community partition is shown in Figure 8.9. The communities are more geographically

localized when compared with the mention network layer solution, while still visually re-

sembling its structure. For instance, the last community picks out the San Francisco/LA

area in a single community, which the original mention network did not. Further, the sec-

ond community groups the Atlanta area with the Massachusetts area, though not as well

as the coordinate network layer. The Pareto community partition, however, still contains

some of the interesting patterns of the hashtag network layer and is not completely given

to geographic localization.

8.6.3 Enron email dataset

Figure 8.10 displays the results of running the same algorithm on the Enron email dataset.

This dataset is a collection of emails that were publicly released as a result of an SEC

investigation; it consists of approximately half a million messages sent to or from a set of
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Figure 8.10: Pareto fronts from Enron email dataset. These Pareto fronts are derived from
a the cut sizes of extrinsic and intrinsic layers.

150 employees. It covers a span of approximately 4 years from 1998 to 2002, though the

density of emails is varied over that time. We split the emails into week-by-week periods

and built a multi-layer graph for each period. The first (extrinsic) layer was created by

placing an edge of weight of 1 between individuals that had correspondence over the course

of that week. The second (intrinsic) layer was created by measuring semantic correlation in

the email body using the TF-IDF score. These values are then thresholded to form edges,

with the threshold dependent on the desired sparsity level.

Note that the Pareto fronts in Figure 8.10 do not appear to be convex. This is interesting

because it implies that simply minimizing a weighted combination of objective functions

would not generate the full space of potentially interesting solutions. By exploring the

Pareto front we get a more nuanced view of the data. We also see a large variation in cut-

sizes; in two of the cases, we see that the cut-size in one layer reaches 0, while the other cut

size is still much larger. This implies that that the layers are sparse enough to be bisected

almost exactly. The difference in optimal bisections between the two layers implies that

that the layers have distinct properties. We also notice that the cut-size on the behavioral

layer tends to be much larger than that of the relational layer; this is because the behavioral

layer is less sparse.
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8.7 Related work

With the advent of large data, there has been more opportunity to explore this multi-layer

structure. There has been some work in the modeling and representation of multi-layer

networks, and how it relates to other studied problems [67], [120]. There is a large body of

work in single-layer community detection [78], consisting of many approaches. In the past

few years, the multi-layer community detection literature has increased significantly. A

succinct review of some of the literature on this topic can be found in [119]. Hypergraphs

have been studied from a spectral perspective [153], which can be useful when dealing

with a multi-layer structure. Some work in applying single-layer modularity methods to

multi-layer structures is also available [19]. For more information, see [120].

Of particular interest is multi-layer community detection methods that utilize some

form of tensor decomposition. As discussed in Section 7.2.1.2, the multi-layer network has

a adjacency tensor representation which can be exploited in order to uncover community

structure. Two examples of this approach include [65], [204] and [52]. [65], [204] use a

bilinear or multilinear approach to decompose the adjacency tensor into relevant factors,

including community partitions, while [52] relates a particular tensor decomposition to the

concept of modularity.

Multi-objective optimization has a long history [40]. Here, we are only interested in

a sorting algorithm used to find points that are possibly Pareto optimal; this is called non-

dominated sorting. The method used in this chapter is part of the evolutionary algorithm

described in [68]. Some interesting application work has been done using multi-objective

optimization [116], including supervised and unsupervised learning.

8.8 Conclusion

Multi-level network analysis is of growing interest as we are faced with increasingly com-

plex data. In this chapter, a method was introduced for finding communities in a multi-layer
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structure; it was demonstrated on a Twitter hashtag dataset and shown to deliver results that

significantly differ from single layer analysis alone. The framework described can also be

applied to other single-layer algorithms for the multi-layer setting.
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CHAPTER 9

Multi-Layer Graph Analysis for Dynamic Social

Networks

Modern social networks frequently encompass multiple distinct types of connectivity in-

formation; for instance, explicitly acknowledged friend relationships might complement

behavioral measures that link users according to their actions or interests. One way to rep-

resent these networks is as multi-layer graphs, where each layer contains a unique set of

edges over the same underlying vertices (users). Edges in different layers typically have

related but distinct semantics; depending on the application multiple layers might be used

to reduce noise through averaging, to perform multifaceted analyses, or a combination of

the two. However, it is not obvious how to extend standard graph analysis techniques to the

multi-layer setting in a flexible way. In this chapter we develop latent variable models and

methods for mining multi-layer networks for connectivity patterns based on noisy data.

Symbol Description
G = (V , E) Multi-layer network
V Vertex set
E = (E1, . . . , EL) Tuple of edge sets for each layer
Ai True adjacency matrix
Wi Observed adjacency matrix

Table 9.1: Glossary of commonly used symbols.
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9.1 Introduction

Multi-layer networks arise naturally when we have more than one source of connectivity

information for a group of users. In a social networking context, we often have knowledge

of direct communication links, i.e., relational information. However, it is also possible to

derive behavioral relationships based on user actions or interests. The question that this

chapter attempts to address is how to deal with these multiple layers of a social network

when attempting to perform tasks like inference, clustering, and anomaly detection.

We propose a generative hierarchical latent-variable model for multi-layer networks,

and show how to perform inference on its parameters. Using techniques from Bayesian

Model Averaging [194], we conditionally decouple the layers of the network using a latent

selection variable; this makes it possible to write the posterior probability of the latent vari-

ables given the multi-layer network. The resulting mixture can be viewed as a scalarization

of a multi-objective optimization problem [72], [167], [235]. When the posterior proba-

bility functions are convex, the scalarization of the multiobjective problem is both optimal

and consistent with the Bayesian context [72], [86].

We then step back from the Bayesian setting and discuss how multi-objective optimiza-

tion can be used to perform MAP estimation of the desired latent variables. Using the

concept of Pareto optimality [167], we can define an entire front of solutions; this allows a

user to define a preference over optimization functions and tune the algorithm accordingly.

The result is a level of supervised optimization and inference that still utilizes the structure

of multi-layer networks.

We perform experiments on a simulated example, showing that our method yields im-

proved clustering performance in noisy conditions. We discuss how our framework can be

combined with existing models, and describe the details of this process for the dynamic

stochastic block model (DSBM) [234], which captures a variety of complex temporal net-

work phenomena. Finally, we apply the multi-layer DSBM to a real-world data set drawn

from the ENRON email corpus.

154



Adjacency 
matrices

A1

W2

W1

A2

Observed 
matrices

Figure 9.1: Adjacency and observation matrices. This graphical model depicts how the
latent adjacency matrices can affect the observervation matrices. Note that the observation
matrices are dependent on all adjacency matrices in general.

9.2 Multi-layer networks

A multi-layer graph G = (V , E) comprises vertices V = {v1, . . . , vp}, common to all

layers, and edges E = (E1, . . . , EL) on L layers, where Ei is the edge set for layer i.

In the real-world network setting, we will assume that the observed data are noisy

reflections of a true underlying multi-layer graph. For convenience we will work with

adjacency representations, letting Ai ∈ Rp×p be the true adjacency matrix of layer i, and

Wi ∈ Rp×p the corresponding observed adjacency matrix. Figure 9.1 depicts the model

graphically.

In some cases Wi might be binary, reflecting merely the presence or absence of a

connection—for instance, whether two users were seen to communicate. In other settings,

such as measuring temporal or content correlation scores between users, the entries of Wi

could be real-valued. We wish to estimate A1, . . . , AL given the observations W1, . . . ,WL.

Using standard parametric methods this will require us to compute the posterior distribu-

tion of A1, . . . , AL, which can be difficult given the number of parameters. Specifically,

the influence of A1, . . . , AL on a single Wi is difficult to measure, as the dependencies are

unspecified.

9.3 Hierarchical model description

We propose a hierarchical model that simplifies this inference procedure by conditionally

decoupling W1, . . . ,WL. For simplicity, let us specialize to the case where L = 2. This
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Figure 9.2: General latent variable model. This model represents a latent variable model, in
which a set of variables Y control the distributions of the adjacency matrices and through
them the observation matrices.

also allows us to view the networks in the setting described in the introduction: one layer

of the network represents the observed extrinsic relationships between users, and the other

their correlated intrinsic behaviors.

Initially, we introduce a latent variable denoted Y (see Figure 9.2) that conditionally

decouples the posterior distributions of the two layers:

P (W1,W2|A1, A2, Y ) = P (W1|A1, Y )P (W2|A2, Y ), (9.1)

P (W1,W2|A1, A2) =

∫
P (W1,W2|A1, A2, Y )P (Y |A1, A2)dY . (9.2)

We can now shift our focus from the adjacency matrices A1, A2, to the latent variable

Y , using Y to represent the adjacency matrices in a useful way. We can write down the

posterior distribution for Y as

P (Y |W1,W2) =
∑
A1,A2

P (Y |A1, A2)P (A1, A2|W1,W2) .

9.4 Posterior mixture modeling

Now consider the graphical model shown in Figure 9.3. We have collapsed the A1, A2

variables with the observed data W1,W2, because we are mainly interested in inferring W ,

and Wi can be considered a representation of the real connectivity.

Following from the previous model, we have decomposed Y = (W,Z), where W ∈

Rp×p is a latent adjacency or similarity matrix describing the underlying connections be-
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tween vertices, and Z ∈ {1, 2} is a model selection variable, P (Z = 1) = α, and

P (Z = 2) = 1 − α. Here we are making the implicit assumption that there is a com-

mon connectivity structure W that informs all layers of the network; due to the different

attributes of each layer, they may reveal this underlying structure in different ways, or ob-

fuscate it altogether. In a sense the model produces observed matrices that correspond to

multiple views of the latent variable W . The model selection variable Z will decouple the

posterior distribution of W given both layers into a weighted sum of marginalized posteri-

ors given each individual layer.

The prior for W is P (W ), left unspecified for now. The distributions P (W1|W,Z)

and P (W2|W,Z) are in general task-dependent (e.g., they could be Gaussian, Wishart,

Bernoulli, etc.), but we will make the simplifying assumption that Z acts as a selector

variable, so that W and W1 are conditionally independent given Z = 2, and likewise W

and W2 are conditionally independent when Z = 1. Formally, using the notation Pz to

denote conditioning on Z = z, we have

P2(W1|W ) = P2(W1) (9.3)

P1(W2|W ) = P1(W2) . (9.4)

We are interested in the posterior distribution of the latent variable W given the ob-

served variables W1,W2:

P (W |W1,W2) (9.5)

= P (W,Z = 1|W1,W2) + P (W,Z = 2|W1,W2) (9.6)

= P (W |W1,W2, Z = 1)P (Z = 1|W1,W2)

+ P (W |W1,W2, Z = 2)P (Z = 2|W1,W2) (9.7)

= ξP (W |W1,W2, Z = 1)

+ (1− ξ)P (W |W1,W2, Z = 2) , (9.8)
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Figure 9.3: Model with similarity matrix and selection variable. We introduce the similarity
matrix W and the selection variable Z to describe our latent variable model. Conditioning
on W and Z, we assume that the two layers are independent from each other.

where ξ = P (Z = 1|W1,W2). Let’s consider the first term. We have

P (W |W1,W2, Z = 1) =
P (W,W1,W2, Z = 1)∑
Ŵ P (Ŵ ,W1,W2, Z = 1)

(9.9)

=
P (W )P1(W1|W )P1(W2)∑
Ŵ P (Ŵ )P1(W1|Ŵ )P1(W2)

. (9.10)

Since P1(W2) does not depend on W , it factors out of the sum in the denominator and

cancels; thus we have

P (W )P1(W1|W )

P1(W1)
. (9.11)

Performing the same computation on the other side and combining, we have

P (W |W1,W2) = ξ
P (W )P1(W1|W )

P1(W1)
+ (1− ξ)P (W )P2(W2|W )

P2(W2)
(9.12)

= P (W ) [γ1P1(W1|W ) + γ2P2(W2|W )] , (9.13)

where γ1 = ξ/P1(W1) and γ2 = (1 − ξ)/P2(W2) are constants with respect to W . If

we assume the prior on W is uniform, then the MAP value of W is also the maximum

likelihood estimate, and can be written as

argmaxW [γ1P1(W1|W ) + γ2P2(W2|W )] . (9.14)

The above solutions describe not just one MAP estimation of W , but rather a family of
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MAP estimations, based on the priors that we implicitly assign to each model by choosing

a specific value of α (which affects ξ and γ in turn). Qualititatively, this can be viewed as

determining a relative confidence parameter between the networks; if W1 is more trusted

than W2, then the best choice of α would be greater than 0.5.

As an example, assume that both P (W1|W ) and P (W2|W ) are distributed as isometric

Gaussians, i.e.,

P (W1|W ) = N (W,σ2
1Ip) (9.15)

P (W2|W ) = N (W,σ2
2Ip) . (9.16)

Then the solution for Ŵ has the form

Ŵ = βW1 + (1− β)W2 (9.17)

for some choice of 0 ≤ β ≤ 1.

A proof of this is given in Appendix D, but intuitively this result makes sense, as an

isometric normal distribution is spherically symmetric around the mean, and so there is no

asymmetric density to pull the optimal point off of the line between the given means. In

general, of course, the solution will not have such a simple form. However, optimization

techniques can be used to find the various optimal solutions for different values of α.

9.5 Simulation example

We use simulations to show that clustering of nodes in a weighted graph can be improved

using the MAP estimate of W . Two random graphs with 500 nodes are constructed with

10 known clusters. The weights between nodes in the same cluster are normally distributed

as N (5, 0.5), and weights between nodes that are not in the same cluster are normally

distributed as N (4.7, 0.5). Both layers come from this underlying similarity structure, but
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Figure 9.4: Clustering simulation. This surface plot shows the ARI for different simulations
of σ2 and β. Note that for all levels of σ2, a β that is around 0.5 tends to produce the best
clustering.

Table 9.2: Variances and ARI scores.

σ1 σ2 Max ARI β

1 1 0.6782 0.5051
1 1.5 0.6199 0.5253
1 2 0.5828 0.4343
1 2.5 0.5514 0.5051
1 3 0.5073 0.4545
1 3.5 0.4878 0.4848
1 4 0.4876 0.5253
1 4.5 0.4635 0.5354
1 5 0.4429 0.4646

are corrupted with i.i.d. Gaussian noise with zero mean and different variances σ1 and

σ2. For various choices of β, the networks are clustered using a normalized-cut spectral

clustering algorithm [143], and the Adjusted Rand Indices (ARI) [111] are computed. For

each of several different levels of variance, this experiment is run 50 times, and the results

are averaged. Figure 9.4 shows a plot of the results. This shows that using (9.13) to estimate

the mixture of networks improves the clustering, as expected. Note that even with unequal

variance, optimal β is consistently near 0.5.
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9.6 Pareto summarizations

Of course, in practice it may be difficult to effecitvely set the prior α directly, which is why

we instead generate a family of MAP estimates, which can then all be evaluated. We can

also view this procedure in a more general framework that can lead to more flexibility in

the inference and estimation procedure. We can view the maximization of the combined

posterior distributions as a scalarization of a multi-objective optimization problem. We can

also consider other solutions to the optimization problem that are more general than linear

scalarization, such as Pareto front analysis.

Let us consider the formal multi-objective optimization problem

Ŵ = argminW [f1(W ), f2(W )] . (9.18)

For the model derived in the previous sections, we have f1(W ) = −P1(W |W1) and

f2(W ) = −P2(W |W2). One potential solution to the multiobjective optimization prob-

lem above is a scalarization of the two objective functions, so that the new problem to be

solved is

Ŵ = argminWγf1(W ) + (1− γ)f2(W ) . (9.19)

This view leads to the objective in (9.13). However, this is not the only available ap-

proach to a multi-objective optimization problem. We can also consider the concept of

Pareto optimality to find solutions for the optimization problem. A solution to an op-

timization problem is said to be weakly Pareto optimal (or weakly non-dominated) if it

is not possible to improve any objective function without lowering some other objec-

tive function [72], [235]. More formally, we say that a solution x1 dominates a solution

x2 if fi(x1) ≤ fi(x2) for every objective function fi and there exists some j such that

fj(x1) < fj(x2). The first Pareto front is the set of weakly non-dominated points.
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Figure 9.5: Pareto front for two Gaussians. A convex Pareto front would bulge toward the
lower left corner, but this plot demonstrates that even relatively simple objective equations
can have extremely non-convex Pareto fronts.

In terms of finding Pareto optimal points, the scalarization technique that is discussed

above would find the Pareto front when the solution space is a convex set and the individual

objective functions are convex functions on the solution space [86]. However, if these

convexity conditions are not met, the scalarization technique will not find the entire Pareto

front. Often times, the posterior distributions in (9.18) are not convex. So, by using the

concept of Pareto optimality, we are extending our list of possible optimal solutions, and

generalizing the MAP estimate that was found in earlier sections. Figure 9.5 shows an

example of the Pareto front of a multiobjective optimization, where f1 and f2 are the two

dimensional pdfs of normal distributions, as shown below:

fi(W ) = (2π)−n/2 |Σi|−
1
2 e−

1
2

(W−Wi)
TΣ−1

i (W−Wi) (9.20)

W1 =

10

8

 ,W2 =

 8

10

 ,Σ1 = Σ2 = 2I2 (9.21)

Even this relatively simple distribution has a non-convex Pareto front; note that minimizing

a linear combination of f1 and f2 can only find optima at the extremes of the curve, and

does not explore the interior, which may be more useful for some applications.

This type of example motivates further research into generating MAP estimates in this
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manner, as finding the Pareto front could give us an advantage when attempting to infer

parameters of the model as we do above, or perform some other common task.

9.7 Stochastic block models and the DSBM

Consider for a moment a single layer network. Often times we are interested in networks

which we expect to have some community structure. We also require something more gen-

eral than attempting to distinguish communities from maximal clique detection. Rather,

a community should be defined as disjoint subsets of nodes that behave in the same way

as the other nodes in the subset. This allows for a more interesting community structure

than just using the density of connections in a group, i.e., creating communities based on

high intra-connectivity between nodes. For instance, one group may exhibit strong inter-

connection with another group, but only moderate connectivity within themselves. This

model also proves interesting when the class membership is already known, and is a way

to leverage that information.

Consider a network with N nodes that we expect to fall in K classes, where c ∈ RN is

a class membership vector. In this setup we are considering binary relationships between

nodes, and so a connectivity matrix A ∈ RN×N is observed. The parameters for a standard

SBM would then be the Bernoulli parameter matrix Θ, where θij is the probability of a

link forming between a node in class i and class j. So, while a connectivity matrix will be

N ×N , Θ ∈ RK×K and is symmetric. It can be shown [234] that the MLE of θij is

θ̂ij =
mij

nij
(9.22)

mij =
∑
x∈i

∑
y∈j

aij (9.23)
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nij =


|i||j|, , i 6= j

|i|(|i| − 1), , i = j

(9.24)

This estimate of Θ can be used to explore the structure of the network. Note that this

method depends heavily on a correct class membership vector; without this the nodes in

the same classes will not be behaving in similar ways.

The SBM accounts for community structure, but does not account for temporal changes

in the network. One solution to this problem would be to fit a SBM to every time step in

the sequence. This approach has problems, however. One major concern is that there is no

accounting for any noise that is introduced when including temporal information. Another

downside is that it fails to take advantage of information from previous time steps, and

it does not encourage the class membership to evolve smoothly over time. Recently, the

Dynamic SBM (DSBM) has been introduced to account for some of these effects [234].

The DSBM employs an extended Kalman filter (EKF) to track temporal changes in the

network. Two types of the DSBM are available: one that is given the class membership

a priori, and another that estimates the class memberships along with the other SBM pa-

rameters. In the following example, only the a priori case is used. In order to estimate the

Bernoulli parameters through the EKF, a logistic transform is used to map the estimates of

Θ into the real line:

ψij = log(θij)− log(1− θij) ∈ (−∞,+∞) . (9.25)

Once the inference is complete, the Kalman estimate is then mapped back into Bernoulli

parameters. For more details, see [234].
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9.8 Enron example

We next look at the real-world ENRON email data set1. This data set consists of approx-

imately a half million email messages sent or recieved by 150 senior employees of the

ENRON Corporation. These emails were made publicly available as a result of the SEC

investigation of the company in 2002, and constitute one of the largest publicly available

email repositories.

This dataset represents a unique oppurtunity to examine private email messages in a

corporate setting. This is rare due to privacy concerns and proprietary information, but

the ENRON dataset is for the most part untouched, except for a few emails that were

specifically requested to be removed. In addition to the raw emails, the dataset also contains

the job title of the employees that are included. This is useful to separate the employees into

classes, so that we may examine their behavior using the DSBM and its related techniques.

To explore the multi-layer structure, two layers are created from the ENRON dataset.

As discussed previously, the information was chosen so that one layer represented the ex-

trinsic, “relational” information between users, and the other represented intrinsic, “be-

havioral” information between users. The network layers are extracted from the data as

follows. First, a relational network is recovered from the headers of emails by identifying

the sender and reciever(s) of each message, including Cc and Bcc recipients. For each week

in the dataset, a separate network of employees is constructed from the emails sent during

that week.

A second set of behavioral networks are recovered using the contents of email mes-

sages. On the same weekly basis the contents of all emails originating from each user are

combined to form long “documents”. These documents combine to produce a dictionary

of words from which term frequency-inverse document frequency (TF-IDF) scores are cal-

culated [15]. TF-IDF scores are commonly used for identifying important words in text

1http://www.cs.cmu.edu/˜enron
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analysis, and are computed using

tf(t, d) =
f(t, d)

maxt̂ f(t̂, d)
(9.26)

idf(t) = log

(
|D|

N(t,D)

)
(9.27)

score(t, d) = tf(t, d)idf(t) , (9.28)

where f(t, d) is the frequency of term t in document d,N(t,D) is the number of documents

in which the term t appears, and |D| is the size of the document corpus, which in this case

is the number of active network nodes. For each active user (document), a TF-IDF score is

computed for each word in the dictionary.

Using the vector of TF-IDF scores for each user, we measure the cosine similarity of

each user by taking dot products in order to obtain a similarity matrix W . Again, this

is done for every week in the relevant time period, creating a second dynamic network

with weighted edges. However, since we started in the SBM framework, it is necessary

to transform the weighted edge network into a binary network. To do this, the similarity

scores are thresholded. To be roughly consistent with the density of the relational network,

we keep the top 15% greatest correlations between users at each time step, setting all other

connections to 0. This allows us to create networks of similar sparsity level.

The above procedure yields a two-layer binary dynamic network that we can use to

obtain insight into the structural dynamics of the ENRON data. To do so, we will extend

the dynamic stochastic block model (DSBM) [107], [234] to the multi-layer setting. In

order to simplify the modeling, we assume that the DSBM groups are known a priori, and

seek to recover the Bernoulli parameters for each class, which predict the likelihood of an

edge between users from any pair of groups. In this case, we group employees by their role

in the company (CEO, President, Director, etc.).

Figure 9.6a and Figure 9.6b shows some of the estimated Bernoulli parameters for dif-

ferent classes when the DSBM is run on the two layers separately. Figure 9.6a represents
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(a) Relational DSBM Parameters.
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(b) Behavioral DSBM Parameters

Figure 9.6: DSBM simulation results. These graphs show the estimated DSBM parameters
for different classes, and how they evolve over time. (a) is the evolution of the DSBM
parameters from the relational layer, while (b) is the evolution of parameters from the
behavioral layer.

the evolution of the relational layer, while the Figure 9.6b represents the behavioral layer.

The DSBM was run over a 120 week period, from December 6th, 1999 to March 27th,

2002. The vertical lines represent important events in the ENRON time line. Line 1 cor-

responds to ENRON releasing a code of ethics policy. It is also the first time that the
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company’s stock reached above $90. Line 2 their stock closing below $60. This was a crit-

ical point in the timeline, because the company began losing many partnerships, including

one to create a video-on-demand system. In this same month, a few of the employees had

begun to communicate the uneasiness with ENRON’s accounting practices. Line 3 is the

week of Jeffrey Skilling’s resignation. A mere month after his resignation as CEO, the SEC

began their official inquiry into ENRON. These events are chosen as a baseline to compare

the two layers of the network.

For the relational DSBM parameters, the most interesting results come from the CEO’s

activity. Note that the CEO group combines all past and present CEO’s. This evolution

of parameters seems to indicate that during some of the important milestones in ENRON’s

demise, the CEO’s were talking to each other more often, as well as sending out emails to

the other employees in the network. This seems to indicate that they were at least somewhat

aware of what was happening with the company during these events, and had maybe dis-

cussed matters among themselves. From the relational layer, it also appears that the CEO’s

were the most active in communicating with other groups, where as the Directors showed

very little connectivity. One explanation for this is that because the subset of employees

that were studied were higher up in the company, the Director group didn’t communicate

with them as much, instead managing the lower level employees. Another interesting re-

sult is that the President group had much more activity towards the end of the time period,

suggesting that as the legal situation worsened, their activity increased.

The behavioral DSBM parameters appear to be more noisy than their relational coun-

terparts. In addition, they show very different behavior than the relational layer. The Vice

Presidents appear much more active during the entire period when compared with the re-

lational layer. Because of the nature of the TF-IDF and thresholding process, there could

be a number of reasons for this. One possible reason could be that the weeks in which the

Vice Presidents were active, they could have been sending a lot of forwarded emails, acting

as a conduit of information between parties. This would cause the TF-IDF scores for the
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Vice President group to rise.

Another interesting phenomenon in the behavioral layer is that of the CEOs. Specif-

ically, it is interesting how their activity drops off significantly, and in fact one event that

is very much apparent in the relational parameters completely disappears. This can only

happen if the document content for the CEOs during those weeks are completely orthog-

onal to the other groups. Because we consider only text that the sender has written, and

we only consider sent emails, one explanation could be that the CEO’s forwarded many

emails without adding any additional text. This would cause the list of words for the CEO

to become very small. However, a more likely explanation after some examination of the

dataset shows that there is a large amount of activity in the relational dataset because many

of the employees were emailing the CEO in a petition-like fashion, and so there was a lot

of activity. However, the CEO group actually sent very few emails during that time.

Combining the two networks as in Section 9.4, we run the DSBM for different levels

of the mixing parameter α. Because of the use of binary networks in this example, the α

parameter is used as the probability that the combined data will choose to use the relational

network when the two layers disagree with each other. The objective in this particular

example is to show that using this method we can not only reduce noise, but also discover

interesting multifaceted behavior that is not obvious from one layer alone. We expect that

this form of combination will emphasize traits or attributes that occur in both networks;

however, attributes that exist mostly in one network but are strong enough will also be

retained. We can study these effects through various network measures; in this case we

look at betweenness and degree centrality.

Figure 9.7 shows the DSBM parameters for mixing parameters α = 0.5. Smaller values

of α should be chosen because the relational netowrk seems to be less noisy, more stable.

This makes sense as extrinsic relations are easier to measure. One interesting phenomenon

that occurs is that much of the behavior that we saw in the relational layer is present,

including the high level of CEO activity. We can also see however, that the period of
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Figure 9.7: Combined DSBM results. These graphs show the results of combining the two
layers of the network with a parameter α = 0.5. Therefore, we should see attributes from
both the behavioral and relational DSBM, and maybe some new, interesting results that
result from combining the two layers.

inactivity that is experienced in the behavioral layer for the CEO group has an effect by

dampening the some of the strong peaks that we saw towards the end of the time period.

Figure 9.8 shows the betweeness centrality of the Directors group over time as the

mixing parameter is varied. In general, the betweeness rises roughly monotonically as

α is varied; however, from week 95 to week 115, betweenness centrality is significantly

increased when using a combined dynamic network—that is, an intermediate value of α.

This time corresponds to the beginning of the company’s upheaval and public disclosure

of troubles. It may be concluded that by examining both network layers simultaneously

we have removed some of the edges between other classes, and thus the centrality score of

this particular group increased. It is true that during this time, when overall email usage

increased, the betweenness centrality measure went down, as there were more shortest

paths through users from other groups. Using the combination of layers, however, there

appears to be an increase in the number of shortest paths through the Directors group.

On the other hand, we can also see well-behaved monotonic correlations in some cases.
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Figure 9.8: Betweenness centrality for directors. This centrality is a measure of how con-
nected a node is to the rest of the network. Larger centrality scores often occur for inter-
mediate values of α, particularly between time 95 and 115.

Figure 9.9 shows a transition of degree centrality for the class of CEOs (of which there

were four during this time period). The behavioral network shows more connectivity for

the CEO class. This phenomenon makes sense, as the behavioral data takes into account all

written documents, which could be correlated with those of other users, while the relational

network only takes into account direct communication between the CEOs and others. In

reality, much of that communication is performed through third parties (such as assistants),

and thus CEOs probably do not send as much email as the average employee. Increasingly

anomalous behavior occurs toward the end of the time period. We hypothesize that this is

due to a larger volume of unusual emails sent directly to the CEO during this tumultuous

period.

9.9 Related work

The literature on single layer networks is large, with contributions coming from many

different fields. There are many results on structural and spectral properties of a single-

layer network, including community detection [164], random walk return times [170], and

percolation theory results [4]. Diffusion or infection models have also been studied in the

context of complex networks (see [92], for instance).
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Figure 9.9: Degree centrality for CEOs. Higher degree centrality for α near one signifies
greater activity in the behavioral network. Anomalous behavior can be seen in the later
time steps as activity patterns shift.

Community structure of a network is a wide range of research in its own right. In this

chapter, a community structure model is used in a real-world example. Specifically, the

stochastic block model (SBM) [107] is used to model community structure within a net-

work by assuming identical statistical behavior for disjoint subsets of nodes. These com-

munities are more flexible than simple cliques because it is not required that they be heavily

interconnected, but only that they interact with nodes in other subcommunities uniformly.

More recently, the SBM has been extended to track temporal changes in the network, ap-

propriately called a Dynamic SBM, or DSBM [234]. The DSBM uses an extended Kalman

filter to track temporal changes between nodes, which will result in a smoothed and poten-

tially insightful evolution of the estimated parameters.

Recently, there has been a growing interest in the multi-layer network problem. Some

basic network properties have been extended to the multi-layer structure [21], [31] as well

as some results that serve as an extension of single layer concepts, such as multi-layer

network growth [169] and spreading of epidemics [203]. The metrics that have been pro-

posed attempt to incorporate the dependence of the layers into the statistical framework,

which will allow for a much richer view of the network. In the same vein, our research

attempts to perform parameter inference on a multi-layer network, incorporating some of

the dependence information that the multi-layer structure allows.
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Bayesian model averaging is also related to this work; ideas from BMA are used to

create conditional independence between the layers of a network [194]. Originally it was

intended to address ambiguous model selection, but the conditional decoupling that occurs

allows us to account for multiple layers in a multi-layer network easily. This framework

accounts for the interdependent relationships between the multiple layers into latent vari-

ables, which can then be estimated.

9.10 Conclusion

We introduced a novel method for inference on multilayer networks. A hierarchical model

was used to jointly describe the noisy observation matrices and MAP estimation was per-

formed on the relevant latent variable. A simulation example using clustering demonstrated

that the mixture of layers under the correct circumstances can lead to better results, and pos-

sibly a better understanding of the underlying structure between users. A real-life example

was also discussed using the ENRON email dataset. This chapter also leads the way for

future work; in addition to trying more noise models that are not so simply reproduced or

even nonconvex, one can use multi-objective optimization to explore other objective func-

tions that could be useful in describing a multi-layer network, such as network smoothness

or the centrality distribution.
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CHAPTER 10

Conclusion and Future Work

This thesis focused on methods regarding data with network structure. In particular, it

touched on four separate research areas:

• edge exchangeable models for hierarchical network data

• graph-based estimation of information theoretic functionals

• estimation and summarization of time-varying interactions for agents

• multi-layer network analysis with an application to community detection

These research areas are connected in that in each of them it is imperative to utilize and

respect the structure of the data, whether that structure is explicit, as in interaction data, or

implicit, as in influence estimation. The thesis advanced the state-of-the-art by introducing

a new framework for complex network interaction data, described new tight bounds for the

multi-class Bayes error rate, introduced new graph-based estimation techniques, introduced

adaptive directed information and techniques for estimation, and finally described a new

approach to multi-layer community detection.

The edge-exchangeable model for hierarchical network data can be extended in multiple

fruitful directions. For the edge-exchangeable interaction framework, one deficit of the

model is that it allows for multi-set observations, which doesn’t mirror most datasets. For

instance, you would never see the same receiver twice on an email. Using techniques from
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partial ranking models, we can extend our framework to remove the multisets from the

possible set of observations. Additionally, more work applying the framework to prediction

in networks is a logical next step, as is incorporating temporality into the model. We further

suggest that models with the same invariance properties but that have better robustness

properties builtin would be a useful extension to the work.

The work in this thesis of graph based information theoretic functionals can be extended

in a number of ways. First, the asymptotic rates at which the estimators described in Chap-

ters 3 and 4 have yet to be explored. For the multi-class generalization of HP divergence,

utilizing this functional in other machine learning contexts could be beneficial to a learning

framework. More work along the lines of Chapter 4 needs to be done to better understand

the bias that occurs in these graph based estimation methods for high intrinsic dimension,

along with more techniques to correct this bias.

For the estimation and summarization of time-varying interactions, we posit a number

of extensions. First, more work needs to be done to understand the behavior of DI and ADI

as a function of the underlying joint distribution of the system; in the theoretical results

that were given in this thesis, assumptions were placed directly on the behavior of DI or

the summand I(Xi
1:t; X

j
t |X

j
1:t−1). A more comprehensive approach would be to start with

the joint distribution of Xk
1:T , k ∈ {1, . . . , N}. We leave this for future work. For the

continuous estimator of DI and ADI, a dynamic covariance model was used. This model

may be extended in numerous ways, including using a non-linear transformation, as in the

nonparanormal family of distributions [137].

For multi-layer network analysis, more work can be done to describe how close the so-

lutions from our community detection algorithm are from the Pareto front; it is empirically

observed that they are on or very close to the Pareto front of solutions. More work can be

done to extend the community detection algorithm to greater than two layers, and to find

computationally efficient ways to apply it to extremely large datasets.
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APPENDIX A

Supplemental Material for Chapter 2

A.1 Full Derivation for Gibbs Sampling

In this section, we assume the following prior structure on our parameters:

θ ∼ Gamma(a, b), α ∼ Beta(c, d) (A.1)

θs ∼ Gamma(as, bs), αs|α ∼ Beta(cs, ds). (A.2)

We begin with sampling on θ and α. Rewriting the likelihood function by canceling out

like terms, we have:

pr ({Rn,j, Tn,j}1≤i≤n,1≤j≤kn | {Si}ni=1; Ψ) =

[θ + α]Kn−1
α

[θ + 1]t··−1
1

∏
r

[1− α]t·r−1
1

∏
s

[θs + αs]
ts·−1
αs

[θs + 1]cs··−1
1

ts·∏
k=1

[1− αs]csrk−1
1

We can determine the posterior on θ in the following way (Ψ(a) = Ψ \ a):
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pr(θ|{Rn,j, Tn,j}, {Si}ni=1,Ψ
(θ))

∝ pr ({Rn,j, Tn,j}1≤i≤n,1≤j≤kn | {Si}ni=1; Ψ) pr(θ|Ψ(θ))

∝ pr ({Rn,j, Tn,j}1≤i≤n,1≤j≤kn | {Si}ni=1; Ψ) pr(θ)

∝ [θ + α]Kn−1
α

[θ + 1]t··−1
1

pr(θ)

(A.3)

When t·· ≥ 2 the denominator is

1

[θ + 1]t··−1
1

=
Γ(θ + 1)

Γ(θ + t··)
=

1

Γ(t·· − 1)

∫ 1

0

xθ(1− x)t··−2dx.

We note that the above can be thought of as a marginalization over an auxiliary variable

x ∼ Beta(θ + 1, t·· − 1), so that

pr(θ, x|{Rn,j, Tn,j}, {Si}ni=1,Ψ
(θ)) ∝ [θ + α]Kn−1

α xθ(1− x)t··−2 pr(θ).

Similarly, we can expand the numerator:

[θ + α]Kn−1
α =

Kn−1∏
i=1

(θ + α · i) =
Kn−1∏
i=1

∑
yi=0,1

θyi · (α · i)1−yi .

We introduce the auxiliary variables yi ∼ Bernoulli
(

θ
θ+α·i

)
, so that we can rewrite the

posterior once again:

pr(θ, x, {yi}|{Rn,j, Tn,j}, {Si}ni=1,Ψ
(θ))

∝ xθ(1− x)t··−2

Kn−1∏
i=1

θyi · (α · i)1−yiθa−1e−bθ,

∝ θ
∑
yi+a−1e−θ(b−log x),

(A.4)

which is a Gamma distribution, so that the posterior for θ can be sampled as a Gamma
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distribution, Gamma (
∑
yi + a, b− log x). We can do this because,

pr(θ, x, {yi}|{Rn,j, Tn,j}, {Si}ni=1,Ψ
(θ)) ∝ pr(θ|x, {yi}, {Rn,j, Tn,j}, {Si}ni=1,Ψ

(θ)).

We can proceed similarly for α:

pr(α|{Rn,j, Tn,j}, {Si}ni=1,Ψ
(α)) ∝ [θ + α]Kn−1

α

∏
r

[1− α]t·r−1
1 pr(α).

We can take care of the first term as we had for θ. Then the final term

[1− α]t·r−1
1 =

t·r−1∏
j=1

(j − α) =
t·r−1∏
j=1

∑
zr,j=0,1

(j − 1)zr,j(1− α)1−zr,j .

So we introduce auxiliary variables zr,j ∼ Bernoulli( j−1
j−α), and can expand the poste-

rior:

pr(α, {zr,j}, {yi}|{Rn,j,Tn,j}, {Si}ni=1,Ψ
(θ))

∝
Kn−1∏
i=1

θyi · (α · i)1−yi .
t·r−1∏
j=1

(j − 1)zr,j(1− α)1−zr,j pr(α)

∝
Kn−1∏
i=1

(α · i)1−yi
∏
r

t·r−1∏
j=1

(1− α)1−zr,jαc−1(1− α)d−1

∝ αc+
∑

(1−yi)−1(1− α)
∑

(1−zr,j)+d−1.

(A.5)

Thus, we can sample the posterior for α as Beta(c+
∑Kn−1

i=1 (1−yi), d+
∑

r

∑t·r−1
j=1 (1−

zr,j)).

We may sample from the posterior distributions of αs and θs in the same way. We can

now write down the full sampling scheme (this would come after the csrk’s and tsr’s are

sampled). First, for each receiver rsi in, we draw a table for that particular receiver:
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pr(krsi = k) ∝


c−jisrk , if k is a previously used table.

αst
−ji
sr , if k is a new table.

A.2 Characterization of structured interaction exchange-

able networks

Here we prove a characterization of structured interaction exchangeable networks. We

focus on the case where each interaction has two components, both with two constituent

elements. That is for every i ∈ N, the interaction I(i) is of the form {{a, b}, {c, d}} ∈

fin2(P1) × fin2(P2). We assume the two populations are not equivalent, but use N as a

common space for labeling purposes.

Given an interaction-labeled network y with e(y) = n, let S : [n]→ fin2(P1)×fin2(P2)

a selection function for y if yS = y, where yS is as defined by Equation 2.1; that is, S is an

interaction process whose induced interaction-labeled network agrees with y. The selection

function is a means to labeling the constituent elements of the interaction-labeled network

y, i.e., its a member of the equivalence class.

Selection functions S, S ′ : [n] → fin2(P1) × fin2(P2) are equivalent, written S ≡ S ′,

if they are elements of the same equivalence class, i.e., yS = yS′ . To every interaction-

labeled network y consisting of n interactions associate a canonical selection function Sy :

[n]→ fin2(P1)×fin2(P2) defined by labeling the constituent elements of both components

in order of appearance, as follows.

We initialize by setting Sy(1) equal to

• {{1, 1}}, {1, 1}} if both components are self loops, or

• {{1, 1}}, {1, 2}} if first component is a self loop, or

• {{1, 2}}, {1, 1}} if second components is a self loop, or
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• {{1, 2}}, {1, 2}} if neither are self loops.

Given Sy(1), . . . , Sy(i − 1), we define Sy(i) = {{v1,1(i), v1,2(i)}, {v2,1(i), v2,2(i)}} by

choosing v1,1(i) ≤ v1,2(i) and v2,1(i) ≤ v2,2(i) to be the smallest vertex labels consistent

with the structure of y|[i]. Thus, v1,1(i) = s, v1,2(i) = s′, v2,1(i) = r, and/or v2,2(i) = r′ ≥

r coincides with a previously observed constituent element labels if one of the elements

involved in the ith interaction corresponds to the element labeled s, r, or r′ in the previous

interactions Sy(1), . . . , Sy(i− 1).

The fin2(P1) × fin2(P2)-simplex consists of all (f{{i,j},{k,l}})j≥i≥−1,l≥k≥−1 such that

f{i,j},{k,l} ≥ 0 for all j ≥ i ≥ −1 and k ≥ j ≥ −1, such that

• f{−1,j},{k,l} = 0 for all j 6= 0,

• f{i,j},{−1,l} = 0 for all l 6= 0, and

•
∑

j≥i≥−1,k≥i≥−1 f{{i,j},{k,l}} = 1.

Labels −1 and 0 for both components will be used to distinguish between various types of

“blips” in the future construction. For any f = (f{{i,j},{k,l}})j≥i≥−1,l≥k≥−1 in the fin2(P1)×

fin2(P2)-simplex and i ∈ P1, we define

f (i)
• =

∑
j≥i,l≥k≥−1

f{{i,j},{k,l}}, and

f (k)
• =

∑
j≥i≥−1,l≥k

f{{i,j},{k,l}}, and f (i,k)
• =

∑
j≥i,l≥k

f{{i,j},{k,l}}

as the sum of masses involving element i and k both independently and jointly.

Every f = (f{i,j},{k,l})i≥j≥−1,l≥k≥−1 in the fin2(P1) × fin2(P2)-simplex determines

a probability distribution on interaction-labeled networks, denoted εf , as follows. Let

X1, X2, . . . be i.i.d. random interactions {{i, j}, {k, l}} with

pr(Xk = {{i, j}, {k, l}} | f) = f{{i,j},{k,l}}, j ≥ i ≥ −1, l ≥ k ≥ −1. (A.6)
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Given X1, X2, . . ., we define the selection function X : N → fin2(Z) × fin2(Z), where

Z = {. . . ,−1, 0, 1, . . .}, as follows. We initialize with m(1)
0 = m

(2)
0 = 0. For n ≥ 1,

suppose m(j)
n−1 = zj ≤ 0. If neither component of Xn contains 0s, then define X (n) = Xn

and update m(j)
n = m

(j)
n−1. We have several potential situations:

• If Xn = {{0, j}, {k, l}} for some j ≥ 1 and l ≥ k ≥ 1, then we put X (n) =

{{z1 − 1, j}, {k, l}} and update m(1)
n = z1 − 1.

• If Xn = {{0, 0}, {k, l}} for some l ≥ k ≥ 1, then we put X (n) = {{z1 − 1, z1 −

1}, {k, l}} and update m(1)
n = z1 − 1.

• If Xn = {{−1, 0}, {k, l}} for some l ≥ k ≥ 1, then we put X (n) = {{z1 − 1, z1 −

2}, {k, l}} and update m(1)
n = z1 − 2.

• If Xn = {{i, j}, {0, l}} for some j ≥ i ≥ 1 and l ≥ 1, then we put X (n) =

{{i, j}, {z2 − 1, l}} and update m(2)
n = z2 − 1.

• If Xn = {{i, j}, {0, 0}} for some j ≥ i ≥ 1, then we put X (n) = {{i, j}, {z2 −

1, z2 − 1}} and update m(2)
n = z2 − 1.

• If Xn = {{i, j}, {0,−1}} for some j ≥ i ≥ 1, then we put X (n) = {{i, j}, {z2 −

1, z2 − 2}} and update m(2)
n = z2 − 2.

• If Xn = {{0, j}, {0, l}} for some j ≥ 1 and l ≥ 1, then we put X (n) = {{z1 −

1, j}, {z2 − 1, l}} and update m(1)
n = z1 − 1 and m(2)

n = z2 − 1.

• If Xn = {{0,−1}, {0, l}} for some l ≥ 1, then we put X (n) = {{z1 − 1, z1 −

2}, {z2 − 1, l}} and update m(1)
n = z1 − 2 and m(2)

n = z2 − 1.

• If Xn = {{0, j}, {0,−1}} for some j ≥ 1, then we put X (n) = {{z1 − 1, j}, {z2 −

1, z2 − 2}} and update m(1)
n = z1 − 1 and m(2)

n = z2 − 2.

• If Xn = {{0,−1}, {0,−1}} for some l ≥ 1, then we put X (n) = {{z1 − 1, z1 −

2}, {z2 − 1, z2 − 2}} and update m(1)
n = z1 − 2 and m(2)

n = z2 − 2.
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Events with −1 or 0 involve constituent elements in each population that appear once and

never again. These “blips” were ruled out in the blip-free representation theorem, ,i.e.,

Theorem 2.3.2. We define Y = yX ∼ εf to be the interaction-labeled network induced by

X .

Proposition A.2.1. The interaction-labeled network Y = yX corresponding toX1, X2, . . .

i.i.d. from (2.3) is interaction exchangeable for all f in the fin2(P1)× fin2(N)-simplex.

For identifiability, we define the ranked reordering of f by

f ↓ = (f ↓{{i,j},{k,l}})j≥i≥−1,l≥l≥−1,

the element of the fin2(P1) × fin2(P2)-simplex obtained by putting (1) f ↓{{−1,0},{−1,0}} =

f{{−1,0},{−1,0}}, (2) f ↓{{0,0},{−1,0}} = f{{0,0},{−1,0}}, (3) f ↓{{−1,0},{0,0}} = f{{−1,0},{0,0}}, and

(4) f ↓{{0,0},{0,0}} = f{{0,0},{0,0}}. We reorder elements 1, 2, . . . for the first component so

that f (i)
• ≥ f

(i+1)
• for all i ≥ 1 and then breaking ties f (i)

• = f
(i+1)
• by declaring that

(f{{i,i},{k,l}, f{{i,i+1},{k,l}}, . . .) comes before (f{{i+1,i+1},{k,l}}, f{{i+1,i+2},{k,l}}, . . .) in the

lexicographic ordering. We also reorder elements 1, 2, . . . for the second component so that

f
(k)
• ≥ f

(k+1)
• for all k ≥ 1. Here again we break ties f (k)

• = f
(k+1)
• using lexicographic

order. We write F↓ to denote the space of rank reordered elements of the fin2(P1) ×

fin2(P2)-simplex.

As the vertex labels other than −1 and 0 are inconsequential, it is clear that εf and

εf ′ determine the same distribution for any f, f ′ for which f ↓ = f ′↓. For any interaction-

labeled network y, we write |y|↓ ∈ F↓ to denote its signature, if it exists, as follows.

Let Sy : N → fin2(P1) × fin2(P2) be the canonical selection function for y. For every

{{i, j}, {k, l}} ∈ fin2(P1)× fin2(P2), j ≥ i ≥ 1 and l ≥ k ≥ 1, we define

f{{i,j},{k,l}}(y) = lim
n→∞

n−1

n∑
m=1

1 [Sy(m) = {i, j}, {k, l}] and
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f (i,k)
• (y) = lim

n→∞
n−1

n∑
m=1

1 [i ∈ Sy(m)(1), k ∈ Sy(m)(2)] , and

f (i,{k,l})
• (y) = lim

n→∞
n−1

n∑
m=1

1 [i ∈ Sy(m)(1), Sy(m)(2) = {k, l}] , and

f (k,{i,j})
• (y) = lim

n→∞
n−1

n∑
m=1

1 [k ∈ Sy(m)(2), Sy(m)(1) = {i, j}]

if the limits exist, where Sy(m)(·) refers to each component of the structured interaction.

We also define

f{{0,i},{k,l}}(y) = f (i,{k,l})
• −

∑
j≥1

f{{i,j},{k,l}}(y), i ≥ 1,

f{{i,j},{0,k}}(y) = f (k,{i,j})
• −

∑
l≥1

f{{i,j},{k,l}}(y), k ≥ 1,

f{{0,i},{0,k}}(y) = f (i,k)
• −

∑
j,l≥1

f{{i,j},{k,l}}(y), k ≥ 1,

f{{0,0},{k,l}}(y) = lim
n→∞

n−1

n∑
m=1

(∑
`≥1

1 [Sy(m) = {{`, `}, {k, l}}]

)

−
∞∑
i=1

f{{i,i},{k,l}}(y), l ≥ k ≥ 1

f{{i,j},{0,0}}(y) = lim
n→∞

n−1

n∑
m=1

(∑
`≥1

1 [Sy(m) = {{i, j}, {`, `}]

)

−
∞∑
k=1

f{{i,j},{k,k}}(y), j ≥ i ≥ 1

f{{0,0},{0,0}}(y) = lim
n→∞

n−1

n∑
m=1

(∑
`′,`≥1

1 [Sy(m) = {{`, `}, {`′, `′}]

)
−

∞∑
i,k=1

f{{i,i},{k,k}}(y),
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Provided each of the above limiting frequencies exists, we define

|y| =
(
f{{i,j},{k,l}}(y)j≥i≥−1,l≥k≥−1

)
,

|y|↓ =
(
f{{i,j},{k,l}}(y)↓j≥i≥−1,l≥k≥−1

)
.

The terms f{{i,j},{k,l}}(y) for i, j, k, l ∈ {0,−1} are used to record the residual proportion

of pure “blip” interactions and do not contribute to the limiting frequencies f{{i,j},{k,l}}(y)

for any given j ≥ i ≥ 1 and l ≥ j ≥ 1.

Theorem A.2.2. Let Y be a structured interaction exchangeable network. Then there exists

a unique probability measure φ on F↓ such that Y ∼ εφ, where

εφ(·) =

∫
F↓
εf (·)φ(df). (A.7)

That is, every structured interaction exchangeable network Y can be generated by first

sampling f ∼ φ and, given f , putting Y = yX forX : N → fin2(P1)×fin2(P2) constructed

from X1, X2, . . . i.i.d. according to (2.3). In particular, Theorem 2.3.2 follows directly by

ruling out blips.

A.2.1 Proof of Theorem A.2.2

We equip the space with the product-discrete topology induced by the metric

d(y,y′) = 1/(1 + sup{n ∈ N : y|[n] = y′|[n]}),

with convention 1/∞ = 0, and F↓ with the topology induced by

dF↓(f, f
′) =

∑
j≥i≥−1,l≥k≥−1

|f{{i,j},{k,l}} − f ′{{i,j},{k,l}}|, f, f ′ ∈ F↓ .

We then work with the respective Borel σ-fields induced by these topologies.
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Let Y be a structured interaction exchangeable random network, let SY : N → fin2(N)×

fin2(N) be its canonical selection function, and let ξ(j)
1 , ξ

(j)
2 , . . . for j = 1, 2 be two i.i.d.

sequences of Uniform[0, 1] random variables which are independent of Y. Given Y and

(ξi)i≥1, we define Z : N → fin2([0, 1]) × fin2([0, 1]) by Z(n) = {{ξ(1)
i , ξ

(1)
j }, {ξ

(2)
k , ξ

(2)
l }}

on the event SY(n) = {{i, j}, {k, l}}, for n ≥ 1.

By independence of Y and (ξ
(j)
i )i≥1,j=1,2 and interaction exchangeability of Y, (Z(n))n≥1

is an exchangeable sequence taking values in the Polish space fin2([0, 1])× fin2([0, 1]). By

de Finetti’s theorem, see, for example, [7], there exists a unique measure µ on the space

P(fin2([0, 1]) × fin2([0, 1])) of probability measures on fin2([0, 1]) × fin2([0, 1]) such that

Z =D Z∗ = (Z∗(n))n≥1 with

pr(Z∗ ∈ ·) =

∫
P(fin2([0,1])×fin2([0,1]))

m∞(·)µ(dm),

where m∞ denotes the infinite product measure of m. In particular, there exists a random

measure ν on fin2([0, 1])× fin2([0, 1]) such that

pr(Z ∈ · | ν) = ν∞ a.s.

Given ν, we define

f{{i,j},{k,l}} = ν({{ξ(1)
i , ξ

(1)
j }, {ξ

(2)
k , ξ

(2)
l }}), i, j, k, l ≥ 1,

f (i,k)
• = ν({{w, x}, {y, z}}) ∈ fin2([0, 1])× fin2([0, 1]) : ξ

(1)
i ∈ {w, x}, ξ

(2)
k ∈ {y, z}}),

i, k ≥ 1,

f{{0,i},{0,k}} = f (i,k)
• −

∞∑
j,l=1

f{{i,j},{k,l}}, i, k ≥ 1,
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f (i,{k,l})
• = ν({{w, x}, {ξ(2)

k , ξ
(2)
l }}) ∈ fin2([0, 1])× fin2([0, 1]) : ξ

(1)
i ∈ {w, x}, i ≥ 1,

f{{0,i},{k,l}} = f (i,{k,l})
• −

∞∑
j=1

f{{i,j},{k,l}}, i, k, l ≥ 1,

f (k,{i,j})
• = ν({{ξ(1)

i , ξ
(1)
j }, {y, z}}) ∈ fin2([0, 1])× fin2([0, 1]) : ξ

(2)
k ∈ {y, z}, i, j, k ≥ 1,

f{{i,j},{k,0}} = f (k,{i,j})
• −

∞∑
l=1

f{{i,j},{k,l}}, i, k, l ≥ 1,

and

f{{0,0},{k,l}} = ν({{{u, u}, {ξ(2)
k , ξ

(2)
l }} ∈ fin2([0, 1])× fin2([0, 1])})−

∞∑
i=1

f{{i,i},{k,l}},

f{{i,j},{0,0}} = ν({{{ξ(1)
i , ξ

(1)
j }, {u, u}} ∈ fin2([0, 1])× fin2([0, 1])})−

∞∑
k=1

f{{i,j},{k,k}},

f{{0,0},{0,0}} = ν({{{u, u}, {u′, u′}} ∈ fin2([0, 1])× fin2([0, 1])})−
∞∑

i,k=1

f{{i,i},{k,k}},

and

f{{−1,0},{k,l}} = ν({{{u, v}, {ξ(2)
k , ξ

(2)
l } ∈ fin2([0, 1])× fin2([0, 1]) : v 6= u})−∑

j>i≥1

f{{i,j},{k,l}},

f{{i,j},{−1,0}} = ν({{{ξ(1)
k , ξ

(1)
l }, {u, v} ∈ fin2([0, 1])× fin2([0, 1]) : v 6= u})−∑

l>k≥1

f{{i,j},{k,l}},

f{{−1,0},{−1,0}} = ν({{{u, v}, {u′, v′}} ∈ fin2([0, 1])× fin2([0, 1]) : u 6= v, u′ 6= v′})−∑
j>i≥1,l>k≥1

f{{i,j},{k,l}}.

By construction (f{{i,j},{k,l}})j≥i≥−1,l≥k≥−1 is in the fin2(N)× fin2(N)-simplex and, there-

fore, f ↓ ∈ F↓. Note that F↓ is a subset of the fin2(N) × fin2(N)-simplex and f 7→ f ↓ is

measurable with respect to the Borel σ-field induced by the metric dF↓(·, ·) given above.

Given ν, we let (Z ′, S ′) be an i.i.d. copy of (Z, SY) and let Y′ = yS′ be the interaction-
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labeled network induced by S ′. We complete the proof by showing pr(Y′ ∈ · | ν) = εf↓ ,

for f ↓ as defined above from ν.

First, let A = {(i, k) ∈ N×N : f
(i,k)
• > 0} and ξA = {(ξ(1)

i , ξ
(2)
k ) : (i, k) ∈ A}.

Second, for j = 1, 2 let A(j) = {i ∈ N : f
(j)
• > 0} and ξ(j)

A = {ξ(j)
i : i ∈ A(j)}. It follows

that

pr(Z ′(1) ∩ ξA = ∅ | ν) = f{{0,0},{0,0}} + f{{−1,0},{0,0}}+

f{{0,0},{−1,0}} + f{{−1,0},{0,0}} + f{{−1,0},{−1,0}},

pr(Z ′(1)(1) ∩ ξ(1)
A = ∅ and Z ′(1)(2) ∩ ξ(2)

A = {ξ(2)
k } | ν) = f{{0,0},{0,k}} + f{{−1,0},{0,k}}+

f{{0,0},{k,k}} + f{{−1,0},{k,k}},

pr(Z ′(1)(1) ∩ ξ(1)
A = {ξ(1)

i } and Z ′(1)(2) ∩ ξ(2)
A = ∅ | ν) = f{{0,i},{0,0}} + f{{0,i},{−1,0}}+

f{{i,i},{0,0}} + f{{i,i},{−1,0}},

pr(Z ′(1)(1) ∩ ξ(1)
A = {ξ(1)

i } and Z ′(1)(2) ∩ ξ(2)
A = {ξ(2)

k } | ν) = f{{0,i},{0,k}} + f{{i,i},{0,k}}+

f{{0,i},{k,k}} + f{{i,i},{k,k}},

and

pr(Z ′(1)(1) ∩ ξA = {ξ(1)
i } and Z ′(1)(2) ∩ ξA = {ξ(2)

k , ξ
(2)
l } | ν) = f{{0,i},{k,l}} + f{{i,i},{k,l}},

pr(Z ′(1)(1) ∩ ξA = {ξ(1)
i , ξ

(2)
j } and Z ′(1)(2) ∩ ξA = {ξ(2)

k } | ν) = f{{i,j},{0,k}} + f{{i,j},{k,k}},

pr(Z ′(1)(1) ∩ ξA = {ξ(1)
i , ξ

(2)
j } and Z ′(1)(2) ∩ ξA = {ξ(2)

k , ξ
(2)
l } | ν) = f{{i,j},{k,l}}.

By exchangeability, i /∈ A(j) implies the pair ξ(j)
i appears at most once inZ with probability

1 for j = 1, 2. We further have that

pr(Z ′1 ∩ ξA = ∅ and Z ′(1)(1) = {u, u},

Z ′(1)(1) = {u′, u′} for some u 6= u′ ∈ [0, 1] | ν) = f{{0,0},{0,0}},
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pr(Z ′1 ∩ ξA = ∅ and Z ′(1)(1) = {u, v},

Z ′(1)(1) = {u′, u′} for some u 6= v 6= u′ ∈ [0, 1] | ν) = f{{−1,0},{0,0}}

pr(Z ′1 ∩ ξA = ∅ and Z ′(1)(1) = {u, u},

Z ′(1)(1) = {u′, v′} for some u 6= u′ 6= v′ ∈ [0, 1] | ν) = f{{0,0},{−1,0}}

pr(Z ′1 ∩ ξA = ∅ and Z ′(1)(1) = {u, v},

Z ′(1)(1) = {u′, v′} for some u 6= v 6= u′ 6= v′ ∈ [0, 1] | ν) = f{{−1,0},{−1,0}}

Similar statements can be written to uniquely identify each element f{{i,j},{k,l}} for j ≥ i ≥

−1 and l ≥ k ≥ −1. We omit the rest simply to conserve space.

Now, define X ′ : N → fin2(N ∪{−1, 0})× fin2(N ∪{−1, 0}) and the random selection

function SX ′ : N → fin2(Z) × fin2(Z) as follows. Let m(1)
0 = m(2) = 0. For n ≥ 1,

suppose m(j)
n−1 = zj ≤ 0 for j = 1, 2. Then

1. IfZ ′(n)(1)∩ξ(1)
A = {ξ(1)

i , ξ
(1)
j } for some i, j ∈ N and ifZ ′(n)(2)∩ξ(2)

A = {ξ(2)
k , ξ

(2)
l }

for some k, l ∈ N, then put X ′(n) = SX′(n) = {{i, j}, {k, l}}.

2. If Z ′(n)(1)∩ ξ(1)
A = {ξ(1)

i , ξ
(1)
j } for some i, j ∈ N and if Z ′(n)(2)∩ ξ(2)

A = {ξ(2)
k } for

some k ∈ N, then put X ′(n) = {{i, j}, {0, k}}, SX′(n) = {{i, j}, {z2 − 1, k}} and

m
(2)
n = z2 − 1.

3. If Z ′(n)(1) ∩ ξ(1)
A = {ξ(1)

i , ξ
(1)
j } for some i, j ∈ N and if Z ′(n)(2) ∩ ξ(2)

A = ∅

and Z ′(n)(2) = {u, u} for some u ∈ [0, 1], then put X ′(n) = {{i, j}, {0, 0}},

SX′(n) = {{i, j}, {z2 − 1, z2 − 1}} and m(2)
n = z2 − 1.

4. If Z ′(n)(1) ∩ ξ(1)
A = {ξ(1)

i , ξ
(1)
j } for some i, j ∈ N and if Z ′(n)(2) ∩ ξ(2)

A = ∅ and

Z ′(n)(2) = {u, v} for some u 6= v ∈ [0, 1], then put X ′(n) = {{i, j}, {−1, 0}},

SX′(n) = {{i, j}, {z2 − 2, z2 − 1}} and m(2)
n = z2 − 2.

5. If Z ′(n)(2)∩ ξ(1)
A = {ξ(2)

k , ξ
(2)
l } for some k, l ∈ N and if Z ′(n)(1)∩ ξ(1)

A = {ξ(1)
i } for

some i ∈ N, then put X ′(n) = {{0, i}, {k, l}}, SX′(n) = {{z1 − 1, i}, {k, l}} and
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m
(1)
n = z1 − 1.

6. If Z ′(n)(2) ∩ ξ(1)
A = {ξ(2)

k , ξ
(2)
l } for some k, l ∈ N and if Z ′(n)(1) ∩ ξ(1)

A = ∅

and Z ′(n)(1) = {u, u} for some u ∈ [0, 1], then put X ′(n) = {{0, 0}, {k, l}},

SX′(n) = {{z1 − 1, z1 − 1}, {k, l}} and m(1)
n = z1 − 1.

7. If Z ′(n)(2) ∩ ξ(2)
A = {ξ(2)

k , ξ
(2)
l } for some k, l ∈ N and if Z ′(n)(1) ∩ ξ(1)

A ∅ and

Z ′(n)(1) = {u, v} for some u 6= v ∈ [0, 1], then put X ′(n) = {{−1, 0}, {k, l}},

SX′(n) = {{z1 − 2, z1 − 1}, {k, l}} and m(1)
n = z1 − 2.

8. If Z ′(n)(1) ∩ ξ(1)
A = ∅ and and Z ′(n)(1) = {u, u} for some u ∈ [0, 1], and if

Z ′(n)(2) ∩ ξ(2)
A = ∅ and Z ′(n)(1) = {u′, u′} for some u′ ∈ [0, 1], then put X ′(n) =

{{0, 0}, {0, 0}}, SX′(n) = {{z1 − 1, z1 − 1}, {z2 − 1, z2 − 1}} and m(1)
n = z1 − 1

and m(2)
n = z2 − 1.

9. If Z ′(n)(1) ∩ ξ(1)
A = ∅ and and Z ′(n)(1) = {u, u} for some u ∈ [0, 1], and if

Z ′(n)(2) ∩ ξ(2)
A = ∅ and Z ′(n)(1) = {u′, v′} for some u′ 6= v′ ∈ [0, 1], then put

X ′(n) = {{0, 0}, {−1, 0}}, SX′(n) = {{z1 − 1, z1 − 1}, {z2 − 2, z2 − 1}} and

m
(1)
n = z1 − 1 and m(2)

n = z2 − 2.

10. If Z ′(n)(1) ∩ ξ(1)
A = ∅ and and Z ′(n)(1) = {u, v} for some u 6= v ∈ [0, 1], and if

Z ′(n)(2) ∩ ξ(2)
A = ∅ and Z ′(n)(1) = {u′, u′} for some u′ ∈ [0, 1], then put X ′(n) =

{{−1, 0}, {0, 0}}, SX′(n) = {{z1 − 2, z1 − 1}, {z2 − 1, z2 − 1}} and m(1)
n = z1 − 2

and m(2)
n = z2 − 1.

11. If Z ′(n)(1) ∩ ξ(1)
A = ∅ and and Z ′(n)(1) = {u, v} for some u 6= v ∈ [0, 1], and if

Z ′(n)(2) ∩ ξ(2)
A = ∅ and Z ′(n)(1) = {u′, v′} for some u′ 6= v′ ∈ [0, 1], then put

X ′(n) = {{−1, 0}, {−1, 0}}, SX′(n) = {{z1 − 2, z1 − 1}, {z2 − 2, z2 − 1}} and

m
(1)
n = z1 − 2 and m(2)

n = z2 − 2.

By construction, we have SX ′ ≡ S ′ a.s. and, given f , X ′ is conditionally i.i.d. from

distribution (2.3). The integral representation in (A.7) follows by de Finetti’s theorem,
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completing the proof.

A.3 Technical Arguments

A.3.1 Proof of Thm. 4.2 and Lemma 5.1

Without loss of generality, we can assume that the number of recievers for each correspon-

dence is equal to 1, i.e. v(s)
l = 1 for l = 1 and 0 otherwise - it is trivial to show that the

results hold for the more general model. Thus, the indexing is simplified, for instance Vn,j

is replaced by Vn.

Theorem A.3.1. Let (S1, R1, V1), (S2, R2, V2), . . . , be distributed according to the extended

canonical HVCM model. Then, pr(Rn,j = r|Hn,j) is proportional to

Dn(s, r)− αsVn(s, r) + (θs + αsVn(s, r))
(
Vn(·,r)−α
mn+θ

)
mn(s) + θs

, r ∈ Rn(s)

and
θs + αsVn(s, r)

mn(s) + θs
· θ + αVn(·, r)

mn + θ
, r 6∈ Rn(s).

Further,

pr((Sn, Rn)Nn=1, (Vn)Nn=1) = pr((Rn)Nn=1, (Vn)Nn=1 | (Sn)Nn=1) pr((Sn)Nn=1),

pr((Rn)Nn=1, (Vn)Nn=1 | (Sn)Nn=1) =
[θ + α]KN−1

α

[θ + 1]mN−1
1

∏
r

[1− α]
VN (·,r)−1
1 ·

∏
s

[θs + αs]
VN (s,·)−1
αs

[θs + 1]
mN (s)−1
1

KN∏
r=1

sαs(VN(s, r), DN(s, r)),

pr((Sn)Nn=1) =
[θ̃ + α̃]SNα
[θ̃ + 1]N1

∏
s

[1− α̃]
DoutN (s)−1
1

(A.8)

Proof. Let Vn,j be the vertex that Rn,j is assigned to. Then we have:
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P (Rn,j = r) =

Vn,j(s,·)∑
i=1

I(ls(i) = r)P (Vn,j = i),

for which the first equality follows. The full distribution result is similar to that in [220],

and depends on the following lemma from that paper:

Lemma A.3.2 ([220]). Let v be the number of latent vertices and d be the number of

observed recievers r for a particular sender s. Further, for w = 1, 2, . . . , v be a particular

latent vertex and dw its degree, and let d̄ = d1, d2, . . . , dw ∈ C, where C are the possible

configurations of recievers assigned to latent vertices, where dw > 0 and
∑v

w=1 = d, then

we have the following relation:

∑
d̄∈C

v∏
w=1

[1− αs]dw−1
1 = sαs(d, v),

where sαs(ts·, cs··) is the generalized Stirling number of the first kind [110] and param-

eters (-1, -αs, 0).

Combining this lemma with the joint distribution of the extended HVCM achieves the

stated result.

In order to show distributional equivalence with the stick-breaking process for αs = 0,

we present a modified results of [39], which demonstrates a similar distribution for the

partition when dealing directly with hierarchical Pitman-Yor processes:

Proposition A.3.3. Let (Xij) be a sample drawn from the following hierarchical model:

π̃|θ, α ∼ PY(θ, α,H) (A.9)

fr|s|π̃, θs, αs ∼ PY(θs, αs, G), (A.10)

Xrs|fr|s ∼ fr|s, i.i.d. (A.11)
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Then the sample generates a exchangeable partition probability function:

Π(n1, n2, . . . , nk) =
[θ + α]Kn−1

α

[θ + 1]t··−1
1

∏
r

[1− α]t·r−1
1

∏
s

[θs + αs]
ts·−1
αs

[θs + 1]cs··−1
1

k∏
r=1

sαs(tsr, csr·),

where sαs(ts·, cs··) is the generalized Stirling number of the first kind [110] and param-

eters (-1, -αs, 0).

The above proposition is an extension to the result in [39]. From the previous propo-

sition, note that the EPPF is distributionally equivalent to the HVCM model, as displayed

in (A.8), which completes the equivalency. Note also that this result is similar to [220],

although the model is slightly different, as there is no underlying discrete measure. It is

modified from [39], as their result does not allow for different αs and θs.

A.3.2 Proof of Lemma 4.1

This result is an extension of [221] for hierarchical Dirichlet processes. We note that a

general result for αs > 0 is not known.

Proof. We start by stating an alternative hierarchical representation of the model

π̃|θ, α ∼ GEM(θ, α) (A.12)

fr|s|π̃, θs, αs ∼ PY(θs, αs, G), (A.13)

G(x) =
∞∑
r=1

π̃rδr(x), (A.14)

Where δy is the Dirac delta function.

We assume that for each sender s, αs = 0, and so PY(θs, 0, G) = DP(θs, G), e.g., a

Dirichlet process. From the aggregation principle of the Dirichlet distribution, we have:

192



(
k−1∑
r=1

fr|s, fks,

∞∑
r=k+1

fr|s

)
∼ Dir

(
θs

k−1∑
r=1

π̃r, θsπ̃k, θs

∞∑
r=k+1

π̃r

)

Further, by removing the first element, we have (given standard properties of the Dirich-

let distribution:

1

1−
∑k−1

r=1 fr|s

(
fk|s,

∞∑
r=k+1

fr|s

)
∼ Dir

(
θsπ̃k, θs

∞∑
r=k+1

π̃r

)

Define β′k|s =
fk|s

1−
∑
r=1 k−1fr|s

, and note that that, again by standard properties of the

Dirichlet distribution:

β′k|s ∼ Beta

(
θsπ̃k, θs

∞∑
r=k+1

π̃r

)
,

and finally that
∑∞

r=k+1 π̃r = 1 −
∑k

r=1 π̃r. It is straightforward algebra to show then

that β′r|s
∏r−1

k=1(1− β′k|s) = fr|s.

A.3.3 Proof of Theorem 2.5.3

For a sequence of real-valued random variables (Xn)n≥0 and a sequence real-valued non-

random variables (λ(n))n≥0, we say Xn ' λ(n) if, for n → ∞, limnXn/λ(n) exists

almost surely and equals a finite and positive random variable. Theorem 2.5.3 is a general-

ization of Theorem 7 in [39].

Proof. Kn denotes the number of unique receivers seen after n e-mails in the HVCM. Let

K0,n denote the number of unique receivers seen from the global distribution. Finally,

let µs =
∑∞

l=1 lν
(s)
l and µ :=

∑
s psµs. It can be shown that Kn = K0,η(n), a.s., where

η(n) = K1,n1 + K2,n2 + . . . + Kd,nd , and Ks,ns is the number of unique receivers for the

sth sender distribution. By [189], we have the following relations:

K0,n

λ0(µn)

a.s.−−→M0,
Ks,ns

λs(µs ns)
&

Ks,ns

λs(µs ps n)

a.s.−−→Ms, (A.15)
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where λ0(x) = xα0 , λs(x) = xαs , and M0, {Ms}ds=1 are Mittag-Leffler random vari-

ables. Now define λ?(x) = λs?(x), µ? = µs? , n? = ns? , and α? = αs? where s? =

arg maxs∈[d] αs. Then

η(n)

λ?(µ?n?)
=

d∑
s=1

Ks,ns

λ?(µ?n?)
=

d∑
s=1

Ks,ns/λs(µsns)

(µ?n?)α?(µsns)−αs
→

d∑
s=1

Ks,ns/λs(µsns)

(µ?p?)α?(µsps)−αs
nαs−α?

For αs = α? = maxs αs, the summand goes to Ms. For αs 6= α∗, the summand goes to 0

almost surely. Therefore,
η(n)

λ?(µ?n?)

a.s.−−→Ms? =: M?. (A.16)

This implies

K0,η(n)

K0,M?λ?(µ?n?)

=
λ0(µη(n))

λ0(µM?λ?(µ?n?))

K0,η(n)/λ0(µη(n))

K0,M?λ?(µ?n?)/λ0(µM?λ?(µ?n?))

a.s.−−→ 1.

where the first term goes to 1 almost surely by (A.16) and the second by (A.15). This

implies
Kn

λ0(µM?λ?(µ?n?))
=

K0,η(n)

K0,M?λ?(µ?n?)

K0,M?λ?(µ?n)

λ0(µM?λ?(µ?n?))

a.s.−−→M0

so Kn '
(
µ1/α?µ?p?n

)α0α? .

A.4 ArXiv Dataset Details

A.4.1 Posterior Predictive Validation (PPV)

Table A.1, Table A.2, and Figure A.1 summarize the posterior predictive validation for the

ArXiv dataset. The proposed model performs well on the number of unique vertices, and

number of authors with 10 papers. It also improves over the Hollywood model for local

posterior predictive coverage.
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Num. Verts. Deg. 1 Deg. 10

Hier. Edge-Ex Model (412429, 415870) (207581, 210207) (4081, 4353)
Hollywood Model (411375, 414523) (225586, 228006) (3695, 3943)

Real Value 413029 224791 3733

Table A.1: Posterior predictive intervals for global statistics.

Num. Verts. Deg. 1 Deg. 10

Hier. Edge-Ex Model 9 / 98 6 / 98 68 / 93
Hollywood Model 0 / 98 0 / 98 0 / 98

Table A.2: Posterior predictive coverage rates of the local distributions when using the 95%
posterior predictive interval.

A.4.2 Comparison of Subject Overlap Results to Co-authorship net-

work

One comparator to the results in Section 2.8.1 is to contruct a weighted network, where

each edge between subjects s1 and s2 is weighted by the amount of articles that are listed

in both s1 and s2. Figure A.2 shows the results of normalized spectral clustering [166] on

this network that is also regularized according to the recommendation in [131], which is

adding d/n to each edge weight, there d is the maximum degree and n is the number of

nodes. Six clusters were used, as that was what was used in the subject overlap study.

This clustering omits a significantly different result than that in the main chapter. While

the subject overlap clustering from the HVCM in Section 2.8.1 is able to reconstruct the

arXiv-created meta classes of computer science, physics, and statistics, the naive spectral

clustering on the coauthorship network lumps these metaclasses together. Further, the result

in Figure A.2 has two clusters of size 2 that have high degree, whereas the subject overlap

clustering appropriately normalizes this scale free degree structure and so does not suffer

from this bias towards high degree. Finally, the HVCM was able to uncover two clusters

that represent the relatively new (and cross-disciplinary) machine-learning class, where the

clustering on the coauthorship network does not.
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Figure A.1: Distribution of nodes that are in x number of local subject distributions

Number of Subjects Number of Articles Percentage (%)
1 234916 45.9
2 169138 33.1
3 70301 13.8
4 26203 5.1
5 7836 1.5
6 1925 0.3
≥7 493 0.01

Table A.3: Number of articles with x amount of subject subclasses.
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Figure A.2: Results of spectral clustering on the co-authorship network. The resulting clus-
ters combines most of the computer science, math, and physics subjects, and also creates
two clusters each with two high degree members only.
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Figure A.3: Trace plot for α and θ, and posterior mean for the arXiv dataset. The posterior
mean excluded the first 200 samples of burn-in.

198



APPENDIX B

Supplemental Material for Chapter 3

B.1 Proofs of Main Theorems

Here we prove Theorems 3.2.1-3.4.1. Throughout this section, we use notations δij and

δmij for FR and generalized FR test statistic, as defined in the chapter. D represents the

HP divergence and f (m)(x) is the marginal distribution of random vector X; E stands for

expectation.

B.1.1 Theorem 3.2.1

The part (a) can be easily derived. Here we provide the proof of part (b). It can be seen that

there exists a constant C1 depending on the pi and pj such that for every fi and fj

fi(x)fj(x) ≤ C1 (pifi(x) + pjfj(x))2 . (B.1)

Set

gij(x) := (pifi(x) + pjfj(x))
∑
k 6=i,j

pkfk(x)
/
f (m)(x). (B.2)

The inequality (3.8) is equivalent to

0 ≤ fi(x)fj(x)

(
1

pifi(x) + pjfj(x)
− 1

f (m)(x)

)
≤ C1 gij(x). (B.3)
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Therefore

∫
fi(x)fj(x)

pifi(x) + pjfj(x)
dx ≤

∫
fi(x)fj (x)

f (m)(x)
dx + C1

(∫
gij (x) dx

)
(B.4)

On the other hand, we have

D
(
p̃ijfi + p̃jifj,

∑
k 6=i,j

p̃ijk fk

)
=

1− 1

(pi + pj)
∑
r 6=i,j

pr

∫
gij(x) dx,

(B.5)

where p̃ij and p̃ji are as before and p̃ijk = pk
/∑
r 6=i,j

pr. Hence,

∫
gij(x) dx = C2

{
1 − D

(
p̃ij fi + p̃ji fj ,

∑
k 6=i ,j

p̃ij
k fk

)}
. (B.6)

where C2 is a constant depending on priors p1, p2, . . . pm. This together with (B.4) implies

that there exists a constant C depending only on priors p1, p2, . . . , pm such that

∫
fi(x)fj(x)

pifi(x) + pjfj(x)
dx ≤

∫
fi(x)fj (x)

f (m)(x)
dx

+C
(

1−D
(
p̃ijfi + p̃jifj,

∑
k 6=i,j

p̃ijk fk

))
,

(B.7)

By recalling HPij (3.4) and GHPm
ij (3.5) we conclude the result.

B.1.2 Theorem 3.3.1

To derive the inequality in (3.17), first we need to prove the following lemma:

Lemma B.1.1. Let a1, a2, . . . , am be a probability distribution onm classes so that
m∑
i=1

ai =
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1. Then

1−max
i
ai ≤ 2

m−1∑
i=1

m∑
j=i+1

aiaj. (B.8)

Proof. Assume, without loss of generality, that the ai have been reordered in such a way

that am is the largest. So it is sufficient to prove that

1− am ≤ 2
m−1∑
i=1

m∑
j=i+1

aiaj. (B.9)

Since
m∑
i=1

ai = 1 then

1− am =
m−1∑
i=1

ai =
m−1∑
i=1

m∑
j=1

aiaj.

Therefore we need to show that

m−1∑
i=1

m∑
j=1

aiaj ≤ 2
m−1∑
i=1

m∑
j=i+1

aiaj. (B.10)

The LHS in (B.10) is

m−1∑
i=1

m∑
j=1

aiaj = 2
m−2∑
i=1

m−1∑
j=i+1

aiaj +
m−1∑
i=1

aiam +
m−1∑
i=1

a2
i . (B.11)

And the RHS in (B.10) is written as

2
m−1∑
i=1

m∑
j=i+1

aiaj = 2
m−2∑
i=1

m−1∑
j=i+1

aiaj + 2
m−1∑
i=1

aiam. (B.12)

Recalling our assumption that am is the largest we have

m−1∑
i=1

a2
i ≤

m−1∑
i=1

aiam. (B.13)

This implies that (B.11) ≤ (B.12). This concludes (B.10) and proves our Lemma.
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Going back to prove upper bound (3.17) in Theorem 3.3.1, let p1f1(x), . . . , pmfm(x)

be joint probabilities of x and i. And denote p(i|x) := P (y = i|x) where variable y ∈

{1, 2, . . . ,m} is class label with priors pi. The BER for m classes is given by

εm = 1−
∫

max
{
p1f1(x), . . . , pmfm(x)

}
dx

= EX

[
1− max

i=1,...,m
p(i|x)

]
,

(B.14)

Moreover the marginal density for random vector X is

fX(x) =
m∑
i=1

pifi(x) = f (m)(x),

And ∫
pipjfi(x)fj(x)

f (m)(x)
dx =

∫ (
pifi(x)

fm(x)

)(
pjfj(x)

f (m)(x)

)
f (m)(x)dx

=

∫
p(i|x)p(j|x)f (m)(x)dx = EX [p(i|X)p(j|X)] .

(B.15)

Therefore (3.17) turns into the following claim:

EX

[
1− max

i=1,...,m
p(i|x)

]
≤ EX

[
2
m−1∑
i=1

m∑
j=i+1

p(i|X)p(j|X)

]
. (B.16)

We know that
m∑
i=1

p(i|x) = 1. Using Lemma B.1.1 where ai represents p(i|x) we have

1− max
i=1,...,m

p(i|x) ≤ 2
m−1∑
i=1

m∑
j=i+1

p(i|X)p(j|X). (B.17)

Hence, we prove the inequality (B.16) and consequently our claim (3.17).

Next we prove the lower bound (3.18). The following lemma is required:
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Lemma B.1.2. For all a1, a2, ..., am such that
m∑
i=1

ai = 1, we have the following:

m− 1

m

1−

(
1− 2

m

m− 1

m−1∑
i=1

m∑
j=i+1

aiaj

)1/2
 ≤ 1−max

i
ai. (B.18)

Proof. After some algebra, we rewrite the inequality in the following form:

m(max
i
ai)

2 − 2 max
i
ai ≤ m− 2− (m− 1)b,

where b = 2
m−1∑
i=1

m∑
j=i+1

aiaj. Without loss of generality, we can assume that the ais are

ordered, so that am is the largest. Then we have that maxi ai = 1−
m−1∑
i=1

ai.

Using this equality on the left side, expanding the square, and subtracting m − 2 from

both sides, we have:

m(
m−1∑
i=1

ai)
2 − (2m− 1)

m−1∑
i=1

ai ≤ −(m− 1)b. (B.19)

Expanding terms once again:

m−1∑
i=1

m∑
j=i+1

aiaj =
m−2∑
i=1

m−1∑
j=i+1

aiaj +
m−1∑
i=1

aiam, (B.20)

and collecting like terms:

m
m−1∑
i=1

a2
i + (4m− 2)

m−2∑
i=1

m−1∑
j=i+1

aiaj − (2m− 1)
m−1∑
i=1

ai

≤ −2(m− 1)
m−1∑
i=1

aiam

(B.21)

We note, that since
∑m

i=1 ai = 1, we have the following:
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m−1∑
i=1

ai =
m−1∑
i=1

m∑
j=1

aiaj = 2
m−2∑
i=1

m−1∑
j=i+1

aiaj +
m−1∑
i=1

aiam +
m−1∑
i=1

a2
i .

Plugging in once more:

(1−m)
m−1∑
i=1

a2
i − (2m− 1)

m−1∑
i=1

aiam ≤ −2(m− 1)
m−1∑
i=1

aiam,

or equivalently:

(1−m)
m−1∑
i=1

a2
i −

m−1∑
i=1

aiam ≤ 0.

Note that since am = maxi ai,
m−1∑
i=1

aiam ≥
m−1∑
i=1

a2
i , so that

(1−m)
m−1∑
i=1

a2
i −

m−1∑
i=1

aiam ≤ −m
m−1∑
i=1

a2
i ≤ 0,

since
m−1∑
i=1

a2
i ≥ 0.

Now to prove (3.18), let p1f1(x), p2f2(x), . . . , pmfm(x) be joint probabilities of x and

i. And denote p(i|x) := P (y = i|x) where variable y ∈ {1, 2, . . . ,m} is class label with

priors pi. By taking the expectation from both sides of (B.18) when ai = p(i|x), we have

EX[1−max
i
p(i|x)]

≥ m− 1

m

1− EX

(
1− 2

m

m− 1

m−1∑
i=1

m∑
j=i+1

p(i|x)p(j|x)

)1/2
 , (B.22)

Further, since φ(x) =
√
x is a concave function, by applying Jensen inequality the RHS in

(B.22) is lower bounded by

m− 1

m

1−

(
1− 2

m

m− 1
EX

[
m−1∑
i=1

m∑
j=i+1

p(i|x)p(j|x)

])1/2
 , (B.23)
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And we know that

EX [p(i|x)p(j|x)] = δmij ,

and

EX[1−max
i
p(i|x)] = εm,

then this proves our proposed lower bound in (3.18).

B.1.3 Theorem 3.3.2

To derive (3.19), the following lemma is required to be proved:

Lemma B.1.3. Let a1, a2, . . . , am be probability distributions on m classes so
m∑
i=1

ai = 1.

Then, for m ≥ 3 and log basis 2, we have

2
m−1∑
i=1

m∑
j=i+1

aiaj ≤ −
1

2

m∑
i=1

ai log ai. (B.24)

Proof. The claim in (B.24) can be rewritten as

4
m−1∑
i=1

m∑
j=i+1

aiaj ≤
m∑
i=1

ai log
1

ai
, (B.25)

where 0 ≤ ai ≤ 1. In addition we have

4
m−1∑
i=1

m∑
j=i+1

aiaj = 4
m−2∑
i=1

m−1∑
j=i+1

aiaj + 4
m−1∑
i=1

aiam, (B.26)

and
m−1∑
i=1

ai −
m−1∑
i=1

aiam −
m−1∑
i=1

a2
i = 2

m−2∑
i=1

m−1∑
j=i+1

aiaj. (B.27)
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Combining (B.26) and (B.27), we have

4
m−1∑
i=1

m∑
j=i+1

aiaj = 2
m−1∑
i=1

ai + 2
m−1∑
i=1

aiam − 2
m−1∑
i=1

a2
i

= 2(1− a2
m)− 2

m−1∑
i=1

a2
i .

(B.28)

Hence we need to show that

2(1− a2
m)− 2

m−1∑
i=1

a2
i ≤

m∑
i=1

ai log
1

ai
. (B.29)

Equivalently

2− 2
m∑
i=1

a2
i ≤

m∑
i=1

ai log
1

ai
. (B.30)

Or

g(m) :=
m∑
i=1

ai(2− 2ai + log ai) ≤ 0. (B.31)

Since for ai ≤ 1/2 the function ai
(
2−2ai+log ai

)
is negative and we know that

m∑
i=1

ai = 1,

therefore g(m) is a decreasing function in m i.e. g(m) ≤ g(3) for m ≥ 3. And it can be

easily checked that g(3) ≤ 0. Hence the proof is completed.

Now, Following arguments in [135], one can check that

1

2

(
H(p)− JS(f1, f2, . . . , fm)

)
= −1

2
EX

[
m∑
i=1

p(i|X) log p(i|X)

]
. (B.32)

Further, in Theorem 3.3.1, we derived

2
m−1∑
i=1

m∑
j=i+1

δmij = EX

[
2
m−1∑
i=1

m∑
j=i+1

p(i|X)p(j|X)

]
, (B.33)
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such that
m∑
i=1

p(i|x) = 1. Using Lemma B.1.3, where again ai = p(i|x), we have

2
m−1∑
i=1

m∑
j=i+1

p(i|X)p(j|X) ≤ −1

2

m∑
i=1

p(i|X) log p(i|X). (B.34)

Taking expectation from both sides of (B.34) proves our claim in (3.19).

Next, we prove the lower bound in (3.20). Similar to Appendices B and C let p(i|x) be

the posterior probabilities. Therefore we can rewrite (3.22) in terms of p(i|x) as

m− 1

m

1−

(
1− 2

m

m− 1
EX

[
m−1∑
i=1

m∑
j=i+1

p(i|x)p(j|x)

])1/2


≥ 1

4(m− 1)

(
EX

[
m∑
i=1

p(i|x) log p(i|x)

])2

.

(B.35)

Analogous to other proofs, let ai = p(i|x) and to shorten the formula set

A(x) = 1− 2
m

m− 1

[
m−1∑
i=1

m∑
j=i+1

aiaj

]
,

therefore (B.35) can be rewritten as

m− 1

m

[
1−

√
EX[A(X)]

]
≥ 1

4(m− 1)

(
EX

[
m∑
i=1

ai log ai

])2

. (B.36)

Equivalently

[
1−

√
EX[A(X)]

]
≥ m

4(m− 1)2

(
EX

[
m∑
i=1

ai log ai

])2

. (B.37)
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Multiple the both sides of (B.35) in 1 +
√

EX[A(X)]:

[1− EX[A(X)]]

≥ m

4(m− 1)2

(
EX

[
m∑
i=1

ai log ai

])2 (
1 +

√
EX[A(X)]

)
.

(B.38)

And we have

1− EX[A(X)] = 2
m

m− 1
EX

[
m−1∑
i=1

m∑
j=i+1

aiaj

]
.

And since
√

EX[A(X)] ≤ 1 then 1 +
√

EX[A(X)] ≤ 2, so it is sufficient to prove that

EX

[
m−1∑
i=1

m∑
j=i+1

aiaj

]
≥ 1

4(m− 1)

(
EX

[
m∑
i=1

ai log ai

])2

. (B.39)

On the other hand we know that by using Jensen inequality

(
EX

[
m∑
i=1

ai log ai

])2

≤ EX

[
m∑
i=1

ai log ai

]2

,

so we only need to show that

m−1∑
i=1

m∑
j=i+1

aiaj ≥
1

4(m− 1)

[
m∑
i=1

ai log ai

]2

. (B.40)

Or

4(m− 1)
m−1∑
i=1

m∑
j=i+1

aiaj ≥

[
m∑
i=1

ai log ai

]2

. (B.41)

Recalling (B.28) in Appendix B.1.3 this is equivalent to

2(m− 1)

(
1−

m∑
i=1

a2
i

)
≥

[
m∑
i=1

ai log ai

]2

. (B.42)
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Now let g(m) be

2(m− 1)

(
1−

m∑
i=1

a2
i

)
−

[
m∑
i=1

ai log ai

]2

,

this is non-negative when m = 3, g(3) ≥ 0. In addition g is an increasing function in m

i.e. g(m) ≥ g(3). Therefore following similar arguments as showing (B.31) the proof of

(3.20) is completed.

B.1.4 Theorem 3.3.3

Recalling the pairwise bound (3.11), the multi-class classification Bayes error HP bound is

given as

εm ≤ 2
m−1∑
i=1

m∑
j=i+1

δij. (B.43)

Since δmij ≤ δij , our proposed bound (3.17) is tighter than (B.43). This implies (3.21).

To derive (3.22), let us first focus on up̃ij :

up̃ij = 4p̃ij p̃ji Dp̃ij(fi, fj) + (p̃ij − p̃ji)2

= 1− 4pipj
pi + pj

∫
fi(x)fj(x)

pifi(x) + pjfj(x)
dx

= 1− 4

pi + pj

∫
pifi(x)pjfj(x)/(fm(x))2(
pifi(x) + pjfj(x)

)
/fm(x)

fm(x) dx

= 1− 4

pi + pj
EX

[
aiaj
ai + aj

]
,

(B.44)

where ai = P (i|x) = pifi/f
(m). Therefore the RHS in (3.22) can be written as

1

m

m−1∑
i=1

m∑
j=i+1

(pi + pj)

[
1−

√
1− 4

pi + pj
EX

[
aiaj
ai + aj

]]
. (B.45)
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Furthermore the LHS in (3.22) can be rewrite in terms of ai and aj as

m− 1

m

1−

(
1− 2

m

m− 1
EX

[
m−1∑
i=1

m∑
j=i+1

aiaj

])1/2
 . (B.46)

Note that since
m∑
i

pi = 1, we have
m−1∑
i=1

m∑
j=i+1

(pi + pj) = m − 1, so that it is sufficient to

show that
m−1∑
i=1

m∑
j=i+1

(
(pi + pj)

2 − 4(pi + pj)EX

[
aiaj
ai + aj

])1/2

≥ (m− 1)

(
1− 2

m

m− 1
EX

[
m−1∑
i=1

m∑
j=i+1

aiaj

])1/2

.

(B.47)

In addition we have
m−1∑
i=1

m∑
j=i+1

(...)1/2 ≥

(
m−1∑
i=1

m∑
j=i+1

...

)1/2

,

then from (B.47), we need to prove that

m−1∑
i=1

m∑
j=i+1

(pi + pj)
2 − 4

m−1∑
i=1

m∑
j=i+1

(pi + pj)

[
aiaj
ai + aj

]

≥ (m− 1)2 − 2m(m− 1)
m−1∑
i=1

m∑
j=i+1

aiaj.

= (m− 1)
m−1∑
i=1

m∑
j=i+1

(pi + pj)− 2m(m− 1)
m−1∑
i=1

m∑
j=i+1

aiaj.

(B.48)

The following inequality implies (B.48)

(pi + pj)− 4

[
aiaj
ai + aj

]
≥ m− 1− 2m(m− 1)

pi + pj
aiaj. (B.49)
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We know that pi + pj ∈ (0, 1) and ai + aj ∈ (0, 1) and since
m∑
l=1

pl = 1 and
m∑
l=1

al = 1.

One can check that form ≥ 3 the inequality (B.49) holds true. This proves our initial claim

in (3.22).

B.1.5 Theorem 3.4.1

Let X = {(xi, yi)}ni=1 be an i.i.d. m-multiclass labeled sample. Let Nnk be Poisson

variables with mean nk =
n∑
i=1

I(yi = k), for k = 1, . . . ,m and independent of one another

and of X(k) = {(xi, yi)}ni=1,yi=k
. Now let X

(k)
= {(xi, yi)}

Nnk
i=1,yi=k

, k = 1, . . . ,m be the

Poisson process with FR statistic R
(ij)

ni,nj
defined in Section 3.4 and constructed by global

MST over
m⋃
k=1

X
(k)

=
m⋃
k=1

{(xi, yi)}
Nnk
i=1,yi=k

. Following the arguments in [99] one yields

that

n−1E
∣∣∣R(ij)

ni,nj
−R(ij)

ni,nj

∣∣∣→ 0,

because of ∣∣∣R(ij)

ni,nj
−R(ij)

ni,nj

∣∣∣ ≤ cd

(
m∑
k=1

∣∣Nnk − nk
∣∣) ,

where cd is the largest possible degree of any vertex in global MST over
m⋃
k=1

X(k), X(k) =

{(xi, yi)}ni=1,yi=k
. Hence it remains to prove that

E
[
R

(ij)

ni,nj

]
2n

→ δmij . (B.50)

For nm1 := (n1, . . . , nm) let Zn
m
1

1 ,Z
nm1
2 , . . . be independent vectors with common den-

sities g(m)
n (x) =

m∑
k=1

nkfk(x)/n. Next let Kn be an independent Poisson variable with

mean n. Consider Zn =
{
Z
nm1
1 ,Z

nm1
2 , . . . ,Z

nm1
Kn

}
a nonhomogeneous Poisson process of

rate
m∑
k=1

nkfk(x). Assign a mark from the set {1, 2, . . . ,m} to each point of Zn. A

point at x, independently of other points, being assigned the mark s with probability
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nsfs
/

(
m∑
k=1

nkfk(x)), for t = 1, . . . ,m. Let X̃(s)
ns denotes the set of points in Zn with

mark s for s = 1, 2, . . . ,m i.e. X̃(s)
ns = {(Zi, yi)}nsi=1,yi=s

. Introduce R̃
(ij)
ni,nj as the FR statis-

tics for data set X̃(1)
n1 ∪ X̃

(2)
n2 ∪ · · · ∪ X̃

(m)
nm , applying the global MST and counting edges

connecting a point with mark i to a point with mark j. Using the marking theorem X̃
(s)
ns ,

for all s = 1, . . . ,m are independent Poisson process with the same distribution as X
(s)

.

Therefore we prove (B.50) for R̃(ij)
ni,nj , see [99], once again. Given points of Zn at x and z,

the probability that they have marks i and j

W (m)
ni,nj

(x, z) :=
nifi(x)njfj(z) + njfj(x)nifi(z)(

m∑
k=1

nkfk(x)

)(
m∑
k=1

nkfk(z)

) .

Then for 1 ≤ i < j ≤ m

E
[
R̃(ij)
ni,nj
|Zn
]

=
∑∑
1≤t<l≤Kn

W (m)
ni,nj

(Z
nm1
t ,Z

nm1
l )× 1

{
(Z

nm1
t ,Z

nm1
l ) ∈ F(Zn)

}
, (B.51)

here F(Zn) represents the global MST over nodes in Zn. Hence, we have

E
[
R̃(ij)
ni,nj
|Zn,

]
=
∑∑
1≤t<l≤Kn

W (m)
ni,nj

(Z
nm1
t ,Z

nm1
l )1

{
(Z

nm1
t ,Z

nm1
l ) ∈ F(Zn)

}
.

Further, set

W (m)(x, z) :=
pipj

(
fi(x)fj(z) + fj(x)fi(z)

)(
m∑
k=1

pkfk(x)

)(
m∑
k=1

pkfk(z)

) .

One can check that W (m)
ni,nj → W (m) and they range in [0, 1]. Next by taking expectation

from (B.51), we can write

E
[
R̃(ij)
ni,nj

]
= E

∑∑
1≤t<l≤Kn

W (m)(Z
nm1
t ,Z

nm1
l )1

{
(Z

nm1
t ,Z

nm1
l ) ∈ F(Zn)

}
+ o(n). (B.52)
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By taking into account the non-Poisson process Z′n =
{
Z
nm1
1 ,Z

nm1
2 , . . . ,Z

nm1
n

}
and the fact

that E
[∣∣ m∑

k=1

Nnk − n
∣∣] = o(n), one yields:

E
[
R̃(ij)
ni,nj

]
= E

∑∑
1≤t<l≤n

W (m)(Z
nm1
t ,Z

nm1
l )1

{
(Z

nm1
t ,Z

nm1
l ) ∈ F(Z′n)

}
+ o(n). (B.53)

Also, we can write that g(m)
n (x) → g(m)(x) where g(m)(x) =

m∑
k=1

pkfk(x). Consequently

by Proposition 1 in [99], we have

E
[
R̃

(ij)
ni,nj

]
n

→
∫
W (m)(x,x)g(m)(x) dx = 2

∫
pipjfi(x)fj(x)

m∑
k=1

pkfk(x)
dx. (B.54)

This completes the proof.
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APPENDIX C

Supplemental Material for Chapter 6

C.1 Proof of Theorem 2.1

To aid in the proof, we prove two propositions and restate Theorem 2 in [206] as Lemma C.1.1.

Since we assume that it is piecewise constant withm changes, we can define [t1, t2, . . . , tm]

as the (unknown) transition points, where t1 = 1. We further define the “oracle mean esti-

mator” u∗(t):

u∗(t) =
m∑
k=1

T∑
t=1

1

t− tk + 1
1(tk ≤ t < tk+1)it,

where tm+1 = T + 1. The proof is based on the following result found in [206], restated in

terms of ADI:

Lemma C.1.1. The tracking regret of the ensemble ADI estimator in comparison with

u∗(t), defined as:

R(u∗(T )) =
T∑
t=1

(ADI(t)− it)2 −
T∑
t=1

(u∗(t)− it)2,

is at most

R(u∗(T )) ≤ m

γ
lnnt −

1

γ
ln βm(1− β)T−m +

γ

8
T. (C.1)

Proposition C.1.2.

E
[
(u∗(t)− it)2

]
≤ σ2

t +
1

t− tk + 1
σ2
∗. (C.2)
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Proof.

E
[
(u∗(t)− it)2

]
= E

( 1

t− tk + 1

t∑
i=tk

(θi + εi)− (θt + εt)

)2


= E

( 1

t− tk + 1

t−1∑
i=tk

εi − εt

)2


=
1

(t− tk + 1)2

(
t−1∑
i=tk

εi + (t− tk)2εt

)

≤ (t− tk)
(t− tk + 1)2

σ2
∗ +

(t− tk)2

(t− tk + 1)2
σ2
t

≤ σ2
∗

t− tk + 1
+ σ2

t .

Proposition C.1.3.

E
[
(ADI(t)− it)2

]
≥ E

[
(ADI(t)− θt)2

]
+ σ2

t . (C.3)

Proof. We first decompose the left side using the definition of it:

(ADI(t)− it)2 = (ADI(t)− θt)2 + 2εt(ADI(t)− θt) + ε2t .

The result follows from taking the expectation of both sides, along with the following

observation:

E
[
2εt(ADI(t)− θt)

]
= E

[
2εt

nt∑
j=1

wj,t−1

t∑
i=1

gj(i, T ; t0)ii

]
(C.4)

= E

[
2

nt∑
j=1

wj,t−1gj(i, T ; t0)itεt

]
(C.5)

= 2σ2
t

nt∑
j=1

wj,t−1gj(i, T ; t0) ≥ 0, (C.6)
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where the last inequality is due to the fact that wj,t−1 and gj(i, T ; t0) are non-negative,

∀i, j, t.

Using the definition of R(u∗(T )) and Props. C.1.3, C.1.2, we obtain:

T∑
t=1

(
E
[
(ADI(t)− θt)2

]
+ σ2

t

)
−

T∑
t=1

(
σ2
t +

m∑
k=1

1

t− tk + 1
1(tk ≤ t < tk+1)σ2

∗

)
≤ R(u∗(T )).

Finally, note the following inequality:

m∑
k=1

T∑
t=1

1

t− tk + 1
≤ m ln

(
T

e

)
.

Combining this with Lemma C.1.1, and rearranging terms, achieves the desired bound.
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APPENDIX D

Supplemental Material for Chapter 9

D.1 Appendix A: Solution of two gaussian distributions

Theorem 1: Let W ∈ Rn The solution to the maximization problem

argmaxWf(W ) = [γ1P1(W1|W ) + γ2P2(W2|W )] , (D.1)

with P (Wi|W ) of the multivariate Normal distribution

P (W1|W ) = N (W,σ2
1In) (D.2)

P (W2|W ) = N (W,σ2
2In), (D.3)

is of the form

Ŵ = βW1 + (1− β)W2. (D.4)

Proof: The proof is separated into two steps. First, we show that for any arbitrary point

x ∈ Rn, the point x‖ which is the projection of x onto the line g(x) = W1 + λ(W2 −W1)

increases the value of f , that is
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f(x) < f(x‖). (D.5)

Then we show that for all points on the line g(x), f is maximized for some point on the line

segment between W1 and W2, corresponding to λ ∈ [0, 1]

Let x ∈ Rn. There exists a unique decomposition of x into a vector parallel to g(x) and

one perpindicular to g(x):

x = x‖ + x⊥. (D.6)

Plugging x into f(W ), we have

f(x) = (2π)−n/2 |σ2
1In|−

1
2 e−

1
2

(x−W1)T (σ2
1In)−1(x−W1)

+ (2π)−n/2 |σ2
2In|−

1
2 e−

1
2

(x−W2)T (σ2
2In)−1(x−W2) (D.7)

=
(
2πσ2

1

)−n/2
e

1
2σ1

(x‖−W1+xi⊥−(W1)i)
2

+
(
2πσ2

2

)−n/2
e

1
2σ2

∑n
i=1(xi‖+xi⊥−(W2)i)

2

. (D.8)

The exponent can be decomposed as follows:

(x‖ + x⊥ −W1)T (x‖ + x⊥ −W1) (D.9)

= (x‖ −W1)T (x‖ −W1) + 2x⊥(x‖ −W1) + xT⊥x⊥ (D.10)

= (x‖ −W1)T (x‖ −W1) + xT⊥x⊥ (D.11)

≥ (x‖ −W1)T (x‖ −W1). (D.12)
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Note that due to the orthogonality of x⊥ with the line g(x), the cross term goes to 0.

The same can be shown for the other exponential term with W2. Since the term with x is

greater than with just x‖, so

f(x‖) ≥ f(x). (D.13)

Finally, let us show that the maximum for f must be between W1 and W2. This can

easily be seen by the fact that both summation terms in f decrease as the distance between

x and the means W1 and W2 increases. When on the line g, but outside the line segment

between W1 and W2, moving closer to the means will increase both terms. Therefore, the

maximum of f must be on the line g, with λ restricted between 0 and 1.
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